制造测试数据的周期模式挖掘

J. Engler
{"title":"制造测试数据的周期模式挖掘","authors":"J. Engler","doi":"10.1109/SECON.2008.4494325","DOIUrl":null,"url":null,"abstract":"Mining of periodic patterns in time series databases is an important data mining problem with many applications. Previous articles have considered the mining of periodic patterns in datasets that range from standard market basket datasets to datasets containing information about the movement activities of cellular phone users. Each of these studies offer solutions to the given domain but lack the ability to address the domain of manufacturing test data. This paper proposes a general model for discovery of periodic patterns within datasets related to the manufacturing of electronic goods. Three general phases are considered. The discretization of the original dataset is first to be discussed, followed by the clustering of the dataset into state related clusters and finally the discovery of periodic patterns in the state transitions of the tests.","PeriodicalId":188817,"journal":{"name":"IEEE SoutheastCon 2008","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mining periodic patterns in manufacturing test data\",\"authors\":\"J. Engler\",\"doi\":\"10.1109/SECON.2008.4494325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining of periodic patterns in time series databases is an important data mining problem with many applications. Previous articles have considered the mining of periodic patterns in datasets that range from standard market basket datasets to datasets containing information about the movement activities of cellular phone users. Each of these studies offer solutions to the given domain but lack the ability to address the domain of manufacturing test data. This paper proposes a general model for discovery of periodic patterns within datasets related to the manufacturing of electronic goods. Three general phases are considered. The discretization of the original dataset is first to be discussed, followed by the clustering of the dataset into state related clusters and finally the discovery of periodic patterns in the state transitions of the tests.\",\"PeriodicalId\":188817,\"journal\":{\"name\":\"IEEE SoutheastCon 2008\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE SoutheastCon 2008\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2008.4494325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE SoutheastCon 2008","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2008.4494325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

时间序列数据库中周期模式的挖掘是许多应用中重要的数据挖掘问题。以前的文章已经考虑了从标准购物篮数据集到包含手机用户移动活动信息的数据集的数据集中周期性模式的挖掘。这些研究都提供了给定领域的解决方案,但缺乏解决制造测试数据领域的能力。本文提出了一个通用模型,用于发现与电子产品制造相关的数据集中的周期性模式。一般考虑三个阶段。首先讨论原始数据集的离散化,然后将数据集聚类到与状态相关的聚类中,最后发现测试状态转换中的周期性模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining periodic patterns in manufacturing test data
Mining of periodic patterns in time series databases is an important data mining problem with many applications. Previous articles have considered the mining of periodic patterns in datasets that range from standard market basket datasets to datasets containing information about the movement activities of cellular phone users. Each of these studies offer solutions to the given domain but lack the ability to address the domain of manufacturing test data. This paper proposes a general model for discovery of periodic patterns within datasets related to the manufacturing of electronic goods. Three general phases are considered. The discretization of the original dataset is first to be discussed, followed by the clustering of the dataset into state related clusters and finally the discovery of periodic patterns in the state transitions of the tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信