{"title":"VariPipe:低开销的可变时钟同步管道","authors":"Navid Toosizadeh, S. Zaky, Jianwen Zhu","doi":"10.1109/ICCD.2009.5413167","DOIUrl":null,"url":null,"abstract":"Synchronous pipelines usually have a fixed clock frequency determined by the worst-case process-voltage-temperature (PVT) analysis of the most critical path. Higher operating frequencies are possible under typical PVT conditions, especially when the most critical path is not triggered. This paper introduces a design methodology that uses asynchronous design to generate the clock of a synchronous pipeline. The result is a variable clock period that changes cycle-by-cycle according to the current operations in the pipeline and the current PVT conditions. The paper also presents a simple design flow to implement variable-clock systems with standard cells using conventional synchronous design tools. The variable-clock pipeline technique has been tested on a 32-bit microprocessor in 90nm technology. Post-layout simulations with three sets of benchmarks demonstrate that the variable-clock processor has a two-fold performance advantage over its fixed-clock counterpart. The overhead of the added clock generation circuit is merely 2.6% in area and 3% in energy consumption, compared to an earlier proposal that costs 100% overhead.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"VariPipe: Low-overhead variable-clock synchronous pipelines\",\"authors\":\"Navid Toosizadeh, S. Zaky, Jianwen Zhu\",\"doi\":\"10.1109/ICCD.2009.5413167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronous pipelines usually have a fixed clock frequency determined by the worst-case process-voltage-temperature (PVT) analysis of the most critical path. Higher operating frequencies are possible under typical PVT conditions, especially when the most critical path is not triggered. This paper introduces a design methodology that uses asynchronous design to generate the clock of a synchronous pipeline. The result is a variable clock period that changes cycle-by-cycle according to the current operations in the pipeline and the current PVT conditions. The paper also presents a simple design flow to implement variable-clock systems with standard cells using conventional synchronous design tools. The variable-clock pipeline technique has been tested on a 32-bit microprocessor in 90nm technology. Post-layout simulations with three sets of benchmarks demonstrate that the variable-clock processor has a two-fold performance advantage over its fixed-clock counterpart. The overhead of the added clock generation circuit is merely 2.6% in area and 3% in energy consumption, compared to an earlier proposal that costs 100% overhead.\",\"PeriodicalId\":256908,\"journal\":{\"name\":\"2009 IEEE International Conference on Computer Design\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2009.5413167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synchronous pipelines usually have a fixed clock frequency determined by the worst-case process-voltage-temperature (PVT) analysis of the most critical path. Higher operating frequencies are possible under typical PVT conditions, especially when the most critical path is not triggered. This paper introduces a design methodology that uses asynchronous design to generate the clock of a synchronous pipeline. The result is a variable clock period that changes cycle-by-cycle according to the current operations in the pipeline and the current PVT conditions. The paper also presents a simple design flow to implement variable-clock systems with standard cells using conventional synchronous design tools. The variable-clock pipeline technique has been tested on a 32-bit microprocessor in 90nm technology. Post-layout simulations with three sets of benchmarks demonstrate that the variable-clock processor has a two-fold performance advantage over its fixed-clock counterpart. The overhead of the added clock generation circuit is merely 2.6% in area and 3% in energy consumption, compared to an earlier proposal that costs 100% overhead.