使用文档-文档语义相似度的文本分类

I. Mukherjee, P. Mahanti, V. Bhattacharya, Samudra Banerjee
{"title":"使用文档-文档语义相似度的文本分类","authors":"I. Mukherjee, P. Mahanti, V. Bhattacharya, Samudra Banerjee","doi":"10.1504/IJWS.2013.056572","DOIUrl":null,"url":null,"abstract":"One of the key problems encountered while using a text classification learning algorithms is that they require huge amount of labelled examples to learn accurately. The objective of this paper is to propose a novel method of topic modelling and document-document semantic similarity algorithm (DDSSA), which reduces the need for larger training data. This algorithm finds the concepts and keywords of the unlabelled text, identifying the topic of unlabelled text from list of concepts and keywords obtained from labelled text. This can be achieved by obtaining the concepts of the labelled text and identify the keywords which holds strong relationships with given labelled data. This topics and keywords obtained from the labelled text can be stored in the database which in turn can be used to compute the semantic similarity with concepts obtained from the unlabelled text. The proposed method is compared with the popular latent semantic analysis (LSA) applied in NLTK and Mallet datasets. The experiment result show...","PeriodicalId":425045,"journal":{"name":"Int. J. Web Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Text classification using document-document semantic similarity\",\"authors\":\"I. Mukherjee, P. Mahanti, V. Bhattacharya, Samudra Banerjee\",\"doi\":\"10.1504/IJWS.2013.056572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the key problems encountered while using a text classification learning algorithms is that they require huge amount of labelled examples to learn accurately. The objective of this paper is to propose a novel method of topic modelling and document-document semantic similarity algorithm (DDSSA), which reduces the need for larger training data. This algorithm finds the concepts and keywords of the unlabelled text, identifying the topic of unlabelled text from list of concepts and keywords obtained from labelled text. This can be achieved by obtaining the concepts of the labelled text and identify the keywords which holds strong relationships with given labelled data. This topics and keywords obtained from the labelled text can be stored in the database which in turn can be used to compute the semantic similarity with concepts obtained from the unlabelled text. The proposed method is compared with the popular latent semantic analysis (LSA) applied in NLTK and Mallet datasets. The experiment result show...\",\"PeriodicalId\":425045,\"journal\":{\"name\":\"Int. J. Web Sci.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Web Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJWS.2013.056572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Web Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJWS.2013.056572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在使用文本分类学习算法时遇到的一个关键问题是,它们需要大量的标记示例才能准确地学习。本文的目标是提出一种新的主题建模方法和文档-文档语义相似度算法(DDSSA),以减少对更大的训练数据的需求。该算法查找未标记文本的概念和关键词,从标记文本中获得的概念和关键词列表中识别未标记文本的主题。这可以通过获得标记文本的概念并识别与给定标记数据保持密切关系的关键字来实现。从标记文本中获得的主题和关键词可以存储在数据库中,然后可以用来计算与从未标记文本中获得的概念的语义相似度。将该方法与应用于NLTK和Mallet数据集的潜在语义分析(LSA)进行了比较。实验结果表明……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text classification using document-document semantic similarity
One of the key problems encountered while using a text classification learning algorithms is that they require huge amount of labelled examples to learn accurately. The objective of this paper is to propose a novel method of topic modelling and document-document semantic similarity algorithm (DDSSA), which reduces the need for larger training data. This algorithm finds the concepts and keywords of the unlabelled text, identifying the topic of unlabelled text from list of concepts and keywords obtained from labelled text. This can be achieved by obtaining the concepts of the labelled text and identify the keywords which holds strong relationships with given labelled data. This topics and keywords obtained from the labelled text can be stored in the database which in turn can be used to compute the semantic similarity with concepts obtained from the unlabelled text. The proposed method is compared with the popular latent semantic analysis (LSA) applied in NLTK and Mallet datasets. The experiment result show...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信