用于XML文档自动分类的贝叶斯网络中的节点耦合

Karima Amrouche, Yassine Ait Ali Yahia
{"title":"用于XML文档自动分类的贝叶斯网络中的节点耦合","authors":"Karima Amrouche, Yassine Ait Ali Yahia","doi":"10.1109/ICMWI.2010.5647906","DOIUrl":null,"url":null,"abstract":"The document classification is one of the classical task of information retrieval and it has involved numerous studies. In this paper, we are presenting a learning model for XML document classification based on Bayesian networks. This latter is a probabilistical reasoning formalism. It permits to represent depending relationships between the random variables in order to describe a problem or a phenomenon. In this article, we are proposing a model which simplifies the arborescent representation of the XML document that we have, named coupled model and we will see that this approach improves the response time and keeps the same performances of the classification.","PeriodicalId":404577,"journal":{"name":"2010 International Conference on Machine and Web Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nodes coupling in a Bayesian network for the automatic classification of XML documents\",\"authors\":\"Karima Amrouche, Yassine Ait Ali Yahia\",\"doi\":\"10.1109/ICMWI.2010.5647906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The document classification is one of the classical task of information retrieval and it has involved numerous studies. In this paper, we are presenting a learning model for XML document classification based on Bayesian networks. This latter is a probabilistical reasoning formalism. It permits to represent depending relationships between the random variables in order to describe a problem or a phenomenon. In this article, we are proposing a model which simplifies the arborescent representation of the XML document that we have, named coupled model and we will see that this approach improves the response time and keeps the same performances of the classification.\",\"PeriodicalId\":404577,\"journal\":{\"name\":\"2010 International Conference on Machine and Web Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine and Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMWI.2010.5647906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine and Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMWI.2010.5647906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

文档分类是信息检索的经典任务之一,涉及的研究较多。在本文中,我们提出了一个基于贝叶斯网络的XML文档分类学习模型。后者是一种概率推理形式。它允许表示随机变量之间的依赖关系,以便描述问题或现象。在本文中,我们提出了一个模型,它简化了我们所拥有的XML文档的树形表示,称为耦合模型,我们将看到这种方法提高了响应时间,并保持了相同的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nodes coupling in a Bayesian network for the automatic classification of XML documents
The document classification is one of the classical task of information retrieval and it has involved numerous studies. In this paper, we are presenting a learning model for XML document classification based on Bayesian networks. This latter is a probabilistical reasoning formalism. It permits to represent depending relationships between the random variables in order to describe a problem or a phenomenon. In this article, we are proposing a model which simplifies the arborescent representation of the XML document that we have, named coupled model and we will see that this approach improves the response time and keeps the same performances of the classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信