{"title":"通往1 tb片上存储器的路径,每秒带宽为pb,功率小于5瓦","authors":"Swaroop Ghosh","doi":"10.1145/2463209.2488913","DOIUrl":null,"url":null,"abstract":"We propose a path to achieve an ambitious target that has never been tried before: a terabyte of on-chip memory for petabit/second of bandwidth with <; 5W of power. Conventional methodology of on-chip memory design is bottom up where the choice of bitcell topology and associated peripherals are predetermined. The resulting memory is sub-optimal and often suffers from high power and poor bandwidth. We approach this problem from top down where the capacity, bandwidth and power specifications guide the choice of bitcell. Our evaluation shows that domain wall memory (DWM) can be a potential technology that can meet TB capacity and Pb/s bandwidth with shoestring power budget.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Path to a TeraByte of on-chip memory for petabit per second bandwidth with < 5Watts of power\",\"authors\":\"Swaroop Ghosh\",\"doi\":\"10.1145/2463209.2488913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a path to achieve an ambitious target that has never been tried before: a terabyte of on-chip memory for petabit/second of bandwidth with <; 5W of power. Conventional methodology of on-chip memory design is bottom up where the choice of bitcell topology and associated peripherals are predetermined. The resulting memory is sub-optimal and often suffers from high power and poor bandwidth. We approach this problem from top down where the capacity, bandwidth and power specifications guide the choice of bitcell. Our evaluation shows that domain wall memory (DWM) can be a potential technology that can meet TB capacity and Pb/s bandwidth with shoestring power budget.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Path to a TeraByte of on-chip memory for petabit per second bandwidth with < 5Watts of power
We propose a path to achieve an ambitious target that has never been tried before: a terabyte of on-chip memory for petabit/second of bandwidth with <; 5W of power. Conventional methodology of on-chip memory design is bottom up where the choice of bitcell topology and associated peripherals are predetermined. The resulting memory is sub-optimal and often suffers from high power and poor bandwidth. We approach this problem from top down where the capacity, bandwidth and power specifications guide the choice of bitcell. Our evaluation shows that domain wall memory (DWM) can be a potential technology that can meet TB capacity and Pb/s bandwidth with shoestring power budget.