具有改善电能质量特点的光伏/电池混合能源转换系统并网

N. Tummuru, M. Mishra, S. Srinivas
{"title":"具有改善电能质量特点的光伏/电池混合能源转换系统并网","authors":"N. Tummuru, M. Mishra, S. Srinivas","doi":"10.1109/ICIT.2013.6505940","DOIUrl":null,"url":null,"abstract":"Grid integration of photo voltaic (PV)/Battery hybrid energy conversion system with (i) multi-functional features of micro grid-side bidirectional voltage source converter (μG-VSC) (ii) tight volatge regulation capability of battery converter (iii) MPPT tracking performance of high gain integrated cascaded boost (HGICB) dc-dc Converter with quatratic gain and less current ripple are presented in this paper. The PV side HGICB Converter is controlled by P&O MPPT algorithm to extract the maximum power from the variable solar irradiation. This paper proposes a modified Instantaneous symmetrical components theory to the μG-VSC in micro-grid applications with following intelligent functionalities (a) to feed the generated active power in proportional to irradiation levels into the grid (b) compensation of the reactive power, (c) load balancing and (d) mitigation of current harmonics generated by non-linear loads, if any, at the point of common coupling (PCC), thus enabling the grid to supply only sinusoidal current at unity power factor. The battery energy storage system (BESS) is regulated to balance the power between PV generation and utility grid. A new control algorithm is also proposed in this paper for the battery converter with tight DC link voltage regulation capability. The dynamic performance of battery converter is invistegated and compared with conventional average current mode control (ACMC). A model of a hybrid PV Energy Conversion System is developed and simulated in MATLAB/SIMULINK environment. The effectiveness of the proposed control strategies for HGICB converter and μG-VSC with battery energy conversion system are validated through extensive simulation studies.","PeriodicalId":192784,"journal":{"name":"2013 IEEE International Conference on Industrial Technology (ICIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Integration of PV/battery hybrid energy conversion system to the grid with power quality improvement features\",\"authors\":\"N. Tummuru, M. Mishra, S. Srinivas\",\"doi\":\"10.1109/ICIT.2013.6505940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grid integration of photo voltaic (PV)/Battery hybrid energy conversion system with (i) multi-functional features of micro grid-side bidirectional voltage source converter (μG-VSC) (ii) tight volatge regulation capability of battery converter (iii) MPPT tracking performance of high gain integrated cascaded boost (HGICB) dc-dc Converter with quatratic gain and less current ripple are presented in this paper. The PV side HGICB Converter is controlled by P&O MPPT algorithm to extract the maximum power from the variable solar irradiation. This paper proposes a modified Instantaneous symmetrical components theory to the μG-VSC in micro-grid applications with following intelligent functionalities (a) to feed the generated active power in proportional to irradiation levels into the grid (b) compensation of the reactive power, (c) load balancing and (d) mitigation of current harmonics generated by non-linear loads, if any, at the point of common coupling (PCC), thus enabling the grid to supply only sinusoidal current at unity power factor. The battery energy storage system (BESS) is regulated to balance the power between PV generation and utility grid. A new control algorithm is also proposed in this paper for the battery converter with tight DC link voltage regulation capability. The dynamic performance of battery converter is invistegated and compared with conventional average current mode control (ACMC). A model of a hybrid PV Energy Conversion System is developed and simulated in MATLAB/SIMULINK environment. The effectiveness of the proposed control strategies for HGICB converter and μG-VSC with battery energy conversion system are validated through extensive simulation studies.\",\"PeriodicalId\":192784,\"journal\":{\"name\":\"2013 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2013.6505940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2013.6505940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文研究了具有微电网侧双向电压源变换器(μG-VSC)多功能特性的光伏/电池混合能量转换系统的并网集成;具有电池变换器的紧密电压调节能力;具有二次增益、电流纹波较小的高增益集成级联升压(HGICB) dc-dc变换器的MPPT跟踪性能。光伏侧hgib变流器采用P&O MPPT算法控制,从可变太阳辐照度中提取最大功率。本文提出了一种改进的瞬时对称分量理论,用于微电网应用中的μG-VSC,具有以下智能功能(a)将产生的有功功率按辐射水平成比例馈送到电网(b)补偿无功功率,(c)负载平衡和(d)减轻由非线性负载产生的电流谐波,如果有的话,在共耦合点(PCC)。从而使电网在单位功率因数下只能提供正弦电流。电池储能系统(BESS)的调节是为了平衡光伏发电和公用电网之间的功率。针对具有较强直流链路电压调节能力的电池变换器,本文还提出了一种新的控制算法。研究了电池变换器的动态特性,并与传统的平均电流模式控制(ACMC)进行了比较。在MATLAB/SIMULINK环境下建立了混合光伏能量转换系统的模型并进行了仿真。通过大量的仿真研究,验证了HGICB变换器和μG-VSC电池能量转换系统控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of PV/battery hybrid energy conversion system to the grid with power quality improvement features
Grid integration of photo voltaic (PV)/Battery hybrid energy conversion system with (i) multi-functional features of micro grid-side bidirectional voltage source converter (μG-VSC) (ii) tight volatge regulation capability of battery converter (iii) MPPT tracking performance of high gain integrated cascaded boost (HGICB) dc-dc Converter with quatratic gain and less current ripple are presented in this paper. The PV side HGICB Converter is controlled by P&O MPPT algorithm to extract the maximum power from the variable solar irradiation. This paper proposes a modified Instantaneous symmetrical components theory to the μG-VSC in micro-grid applications with following intelligent functionalities (a) to feed the generated active power in proportional to irradiation levels into the grid (b) compensation of the reactive power, (c) load balancing and (d) mitigation of current harmonics generated by non-linear loads, if any, at the point of common coupling (PCC), thus enabling the grid to supply only sinusoidal current at unity power factor. The battery energy storage system (BESS) is regulated to balance the power between PV generation and utility grid. A new control algorithm is also proposed in this paper for the battery converter with tight DC link voltage regulation capability. The dynamic performance of battery converter is invistegated and compared with conventional average current mode control (ACMC). A model of a hybrid PV Energy Conversion System is developed and simulated in MATLAB/SIMULINK environment. The effectiveness of the proposed control strategies for HGICB converter and μG-VSC with battery energy conversion system are validated through extensive simulation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信