D. Scaccabarozzi, B. Saggin, Arash Valiesfahani, C. Biffi, A. Tuissi
{"title":"空间微天平界面阻尼器的可行性设计","authors":"D. Scaccabarozzi, B. Saggin, Arash Valiesfahani, C. Biffi, A. Tuissi","doi":"10.1109/METROAEROSPACE.2017.7999614","DOIUrl":null,"url":null,"abstract":"Feasibility design of a damper based on superelastic shape memory alloys (SMAs) is presented. The design wants to develop a passive vibration insulator for the Contamination Assessment Microbalance instrument, a quartz crystal microbalance for monitoring and measuring contamination in space environment. The ability of SMAs to act as efficient vibration insulators comes from their pseudo-elastic capabilities as the hysteretic force versus displacement behavior allows for energy dissipation. A 3D model of the instrument was developed to perform modal and dynamic random analyses aimed to identify the insulator mechanical characteristics and verify the instrument mechanical resistance. Moreover, a setup was designed to measure superelastic damping capacity of a commercial pseudoelastic shape memory alloy wire in dynamic tensile mode. The wire' specific damping capacity was then tested in different conditions, i.e. changing the excitation frequency and the amplitude of the deformation within a range of interest. The experimental activity allowed validation of the selected SMA wire for the intended application.","PeriodicalId":229414,"journal":{"name":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feasibility design of an interface damper for a space borne microbalance\",\"authors\":\"D. Scaccabarozzi, B. Saggin, Arash Valiesfahani, C. Biffi, A. Tuissi\",\"doi\":\"10.1109/METROAEROSPACE.2017.7999614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feasibility design of a damper based on superelastic shape memory alloys (SMAs) is presented. The design wants to develop a passive vibration insulator for the Contamination Assessment Microbalance instrument, a quartz crystal microbalance for monitoring and measuring contamination in space environment. The ability of SMAs to act as efficient vibration insulators comes from their pseudo-elastic capabilities as the hysteretic force versus displacement behavior allows for energy dissipation. A 3D model of the instrument was developed to perform modal and dynamic random analyses aimed to identify the insulator mechanical characteristics and verify the instrument mechanical resistance. Moreover, a setup was designed to measure superelastic damping capacity of a commercial pseudoelastic shape memory alloy wire in dynamic tensile mode. The wire' specific damping capacity was then tested in different conditions, i.e. changing the excitation frequency and the amplitude of the deformation within a range of interest. The experimental activity allowed validation of the selected SMA wire for the intended application.\",\"PeriodicalId\":229414,\"journal\":{\"name\":\"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/METROAEROSPACE.2017.7999614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METROAEROSPACE.2017.7999614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility design of an interface damper for a space borne microbalance
Feasibility design of a damper based on superelastic shape memory alloys (SMAs) is presented. The design wants to develop a passive vibration insulator for the Contamination Assessment Microbalance instrument, a quartz crystal microbalance for monitoring and measuring contamination in space environment. The ability of SMAs to act as efficient vibration insulators comes from their pseudo-elastic capabilities as the hysteretic force versus displacement behavior allows for energy dissipation. A 3D model of the instrument was developed to perform modal and dynamic random analyses aimed to identify the insulator mechanical characteristics and verify the instrument mechanical resistance. Moreover, a setup was designed to measure superelastic damping capacity of a commercial pseudoelastic shape memory alloy wire in dynamic tensile mode. The wire' specific damping capacity was then tested in different conditions, i.e. changing the excitation frequency and the amplitude of the deformation within a range of interest. The experimental activity allowed validation of the selected SMA wire for the intended application.