邀请论文:神经形态硬件的整体故障注入平台

Felix Staudigl, Thorben Fetz, Rebecca Pelke, Dominik Sisejkovic, J. Joseph, L. Bolzani, R. Leupers
{"title":"邀请论文:神经形态硬件的整体故障注入平台","authors":"Felix Staudigl, Thorben Fetz, Rebecca Pelke, Dominik Sisejkovic, J. Joseph, L. Bolzani, R. Leupers","doi":"10.1109/LATS58125.2023.10154482","DOIUrl":null,"url":null,"abstract":"Logic-in-memory (LIM) is a promising flavor of the computing-in-memory (CIM) paradigm that utilizes memristive crossbar arrays to execute logic gates, resulting in high per-formance and energy efficiency. Binary neural networks (BNNs) can particularly benefit from LIM due to their massive parallel execution of binary logic gates. However, the impact of faults on BNNs accelerated with LIM has yet to be thoroughly investigated. To address this gap, we developed two distinct fault injection frameworks able to provide insights into the impact of different types of faults on the behavior of LIM. On the one hand, X-Fault aims to evaluate the impact of different faults that can affect crossbar arrays after manufacturing. On the other hand, FLIM allows for evaluating in-field faults on LIM. While both frameworks excel at their respective abstraction level, the complexity of neuromorphic systems requires a comprehensive fault analysis to grasp the fundamental impact stemming from the memristor to the BNN. Hence, we propose X-FLIM, a holistic fault injection platform capable of executing full-fledged BNNs on LIM while injecting in-field faults at the memristor and application level.","PeriodicalId":145157,"journal":{"name":"2023 IEEE 24th Latin American Test Symposium (LATS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invited Paper: A Holistic Fault Injection Platform for Neuromorphic Hardware\",\"authors\":\"Felix Staudigl, Thorben Fetz, Rebecca Pelke, Dominik Sisejkovic, J. Joseph, L. Bolzani, R. Leupers\",\"doi\":\"10.1109/LATS58125.2023.10154482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logic-in-memory (LIM) is a promising flavor of the computing-in-memory (CIM) paradigm that utilizes memristive crossbar arrays to execute logic gates, resulting in high per-formance and energy efficiency. Binary neural networks (BNNs) can particularly benefit from LIM due to their massive parallel execution of binary logic gates. However, the impact of faults on BNNs accelerated with LIM has yet to be thoroughly investigated. To address this gap, we developed two distinct fault injection frameworks able to provide insights into the impact of different types of faults on the behavior of LIM. On the one hand, X-Fault aims to evaluate the impact of different faults that can affect crossbar arrays after manufacturing. On the other hand, FLIM allows for evaluating in-field faults on LIM. While both frameworks excel at their respective abstraction level, the complexity of neuromorphic systems requires a comprehensive fault analysis to grasp the fundamental impact stemming from the memristor to the BNN. Hence, we propose X-FLIM, a holistic fault injection platform capable of executing full-fledged BNNs on LIM while injecting in-field faults at the memristor and application level.\",\"PeriodicalId\":145157,\"journal\":{\"name\":\"2023 IEEE 24th Latin American Test Symposium (LATS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th Latin American Test Symposium (LATS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATS58125.2023.10154482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th Latin American Test Symposium (LATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATS58125.2023.10154482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内存中逻辑(LIM)是内存中计算(CIM)范式的一种很有前途的风格,它利用忆阻交叉栏阵列来执行逻辑门,从而获得高性能和能效。由于二进制逻辑门的大量并行执行,二进制神经网络(bnn)特别受益于LIM。然而,断层对随LIM加速的bnn的影响尚未得到彻底的研究。为了解决这一差距,我们开发了两个不同的故障注入框架,能够深入了解不同类型的故障对LIM行为的影响。一方面,X-Fault旨在评估制造后不同故障对横杆阵列的影响。另一方面,FLIM允许在LIM上评估现场故障。虽然这两种框架都在各自的抽象层面上表现出色,但神经形态系统的复杂性需要进行全面的故障分析,以掌握记忆电阻器对BNN的根本影响。因此,我们提出了X-FLIM,这是一个整体故障注入平台,能够在记忆电阻器和应用级别注入现场故障的同时在LIM上执行完整的bnn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invited Paper: A Holistic Fault Injection Platform for Neuromorphic Hardware
Logic-in-memory (LIM) is a promising flavor of the computing-in-memory (CIM) paradigm that utilizes memristive crossbar arrays to execute logic gates, resulting in high per-formance and energy efficiency. Binary neural networks (BNNs) can particularly benefit from LIM due to their massive parallel execution of binary logic gates. However, the impact of faults on BNNs accelerated with LIM has yet to be thoroughly investigated. To address this gap, we developed two distinct fault injection frameworks able to provide insights into the impact of different types of faults on the behavior of LIM. On the one hand, X-Fault aims to evaluate the impact of different faults that can affect crossbar arrays after manufacturing. On the other hand, FLIM allows for evaluating in-field faults on LIM. While both frameworks excel at their respective abstraction level, the complexity of neuromorphic systems requires a comprehensive fault analysis to grasp the fundamental impact stemming from the memristor to the BNN. Hence, we propose X-FLIM, a holistic fault injection platform capable of executing full-fledged BNNs on LIM while injecting in-field faults at the memristor and application level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信