基于q -学习算法的自动驾驶电动车自适应巡航控制

Angelo Coppola, A. Petrillo, R. Rizzo, S. Santini
{"title":"基于q -学习算法的自动驾驶电动车自适应巡航控制","authors":"Angelo Coppola, A. Petrillo, R. Rizzo, S. Santini","doi":"10.23919/AEIT53387.2021.9627059","DOIUrl":null,"url":null,"abstract":"This work presents an ACC-like longitudinal controller for an autonomous electric vehicle, named Ego-Vehicle, based on a Deep Deterministic Reinforcement Learning algorithm. More specifically, the designed algorithm exploits the use of the Deep Deterministic Policy Gradient (DDPG) agent and the reward function explicitly takes into account both the speed and position error of the Ego-Vehicle w.r.t. the preceding one. After properly training the DDPG agent, the control ACC-like strategy is validated considering a realistic driving cycle for the preceding vehicle. Numerical results confirm the effectiveness of the designed strategy.","PeriodicalId":138886,"journal":{"name":"2021 AEIT International Annual Conference (AEIT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive Cruise Control for Autonomous Electric Vehicles based on Q-learning algorithm\",\"authors\":\"Angelo Coppola, A. Petrillo, R. Rizzo, S. Santini\",\"doi\":\"10.23919/AEIT53387.2021.9627059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an ACC-like longitudinal controller for an autonomous electric vehicle, named Ego-Vehicle, based on a Deep Deterministic Reinforcement Learning algorithm. More specifically, the designed algorithm exploits the use of the Deep Deterministic Policy Gradient (DDPG) agent and the reward function explicitly takes into account both the speed and position error of the Ego-Vehicle w.r.t. the preceding one. After properly training the DDPG agent, the control ACC-like strategy is validated considering a realistic driving cycle for the preceding vehicle. Numerical results confirm the effectiveness of the designed strategy.\",\"PeriodicalId\":138886,\"journal\":{\"name\":\"2021 AEIT International Annual Conference (AEIT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT53387.2021.9627059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT53387.2021.9627059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

这项工作提出了一种基于深度确定性强化学习算法的自动电动汽车的类似acc的纵向控制器,名为Ego-Vehicle。更具体地说,所设计的算法利用了深度确定性策略梯度(DDPG)代理,并且奖励函数明确地考虑了自我车辆的速度和位置误差。在对DDPG智能体进行适当训练后,考虑前车的真实行驶周期,验证了类acc控制策略。数值结果验证了所设计策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Cruise Control for Autonomous Electric Vehicles based on Q-learning algorithm
This work presents an ACC-like longitudinal controller for an autonomous electric vehicle, named Ego-Vehicle, based on a Deep Deterministic Reinforcement Learning algorithm. More specifically, the designed algorithm exploits the use of the Deep Deterministic Policy Gradient (DDPG) agent and the reward function explicitly takes into account both the speed and position error of the Ego-Vehicle w.r.t. the preceding one. After properly training the DDPG agent, the control ACC-like strategy is validated considering a realistic driving cycle for the preceding vehicle. Numerical results confirm the effectiveness of the designed strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信