避障和运动诱导导航

A. Yakovleff, D. Abbott, X. T. Nguyen, K. Eshraghian
{"title":"避障和运动诱导导航","authors":"A. Yakovleff, D. Abbott, X. T. Nguyen, K. Eshraghian","doi":"10.1109/CAMP.1995.521063","DOIUrl":null,"url":null,"abstract":"In nature, the visual detection of motion appears to be used in a variety of tasks, ranging from collision avoidance to posture maintenance. Many insects seem to rely primarily on information provided by an array of elementary movement detectors in order to navigate. Moreover, experimental evidence suggests that motion information is interpreted at an early stage of the insect visual system, and may be closely linked to motor control. A motion detector, whose design is based on some of the characteristics of the insect visual system, has been implemented on a single VLSI chip. This paper shows the manner in which motion information, provided by the chip in real-time, may be utilised by the control system of an autonomous vehicle in low-level perceptual tasks.","PeriodicalId":277209,"journal":{"name":"Proceedings of Conference on Computer Architectures for Machine Perception","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Obstacle avoidance and motion-induced navigation\",\"authors\":\"A. Yakovleff, D. Abbott, X. T. Nguyen, K. Eshraghian\",\"doi\":\"10.1109/CAMP.1995.521063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In nature, the visual detection of motion appears to be used in a variety of tasks, ranging from collision avoidance to posture maintenance. Many insects seem to rely primarily on information provided by an array of elementary movement detectors in order to navigate. Moreover, experimental evidence suggests that motion information is interpreted at an early stage of the insect visual system, and may be closely linked to motor control. A motion detector, whose design is based on some of the characteristics of the insect visual system, has been implemented on a single VLSI chip. This paper shows the manner in which motion information, provided by the chip in real-time, may be utilised by the control system of an autonomous vehicle in low-level perceptual tasks.\",\"PeriodicalId\":277209,\"journal\":{\"name\":\"Proceedings of Conference on Computer Architectures for Machine Perception\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Conference on Computer Architectures for Machine Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMP.1995.521063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Conference on Computer Architectures for Machine Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMP.1995.521063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在自然界中,运动的视觉检测似乎用于各种任务,从避免碰撞到保持姿势。许多昆虫似乎主要依靠一系列基本运动探测器提供的信息来导航。此外,实验证据表明,运动信息在昆虫视觉系统的早期阶段就被解释,并且可能与运动控制密切相关。基于昆虫视觉系统的一些特点,设计了一种运动检测器,并在单个VLSI芯片上实现。本文展示了由芯片实时提供的运动信息可以被自动驾驶车辆的控制系统用于低级感知任务的方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obstacle avoidance and motion-induced navigation
In nature, the visual detection of motion appears to be used in a variety of tasks, ranging from collision avoidance to posture maintenance. Many insects seem to rely primarily on information provided by an array of elementary movement detectors in order to navigate. Moreover, experimental evidence suggests that motion information is interpreted at an early stage of the insect visual system, and may be closely linked to motor control. A motion detector, whose design is based on some of the characteristics of the insect visual system, has been implemented on a single VLSI chip. This paper shows the manner in which motion information, provided by the chip in real-time, may be utilised by the control system of an autonomous vehicle in low-level perceptual tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信