Mojtaba Parsakordasiabi, I. Vornicu, Á. Rodríguez-Vázquez, R. Carmona-Galán
{"title":"基于fpga的tdc测量吞吐量最大化的新方法","authors":"Mojtaba Parsakordasiabi, I. Vornicu, Á. Rodríguez-Vázquez, R. Carmona-Galán","doi":"10.1109/EBCCSP53293.2021.9502401","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for dead-time minimization while preserving low resource usage and high resolution in FPGA-based time-to-digital (TDC) converters. The proposed TDC architecture can be employed in applications in which many events need to be detected in a short time, such as time-of-flight positron emission tomography (ToF-PET) applications. The presented architecture consists of a toggling input stage, a tapped delay line (TDL), a dual-mode counter-based encoder, a coarse counter, and a bin width calibration stage. The minimum dead-time of TDL TDCs is two clock cycles. The proposed architecture reduced dead-time to one clock cycle. The measurement results of the proposed low-resources TDC in an Artix-7 FPGA show [-0.80, 1.34] LSB differential nonlinearity (DNL) and [-0.73, 1.97] LSB integral non-linearity (INL). The measured LSB size and single-shot precision (SSP) are 22.1 ps and 28.43 ps, respectively.","PeriodicalId":291826,"journal":{"name":"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Approach for Measurement Throughput Maximization in FPGA-based TDCs\",\"authors\":\"Mojtaba Parsakordasiabi, I. Vornicu, Á. Rodríguez-Vázquez, R. Carmona-Galán\",\"doi\":\"10.1109/EBCCSP53293.2021.9502401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach for dead-time minimization while preserving low resource usage and high resolution in FPGA-based time-to-digital (TDC) converters. The proposed TDC architecture can be employed in applications in which many events need to be detected in a short time, such as time-of-flight positron emission tomography (ToF-PET) applications. The presented architecture consists of a toggling input stage, a tapped delay line (TDL), a dual-mode counter-based encoder, a coarse counter, and a bin width calibration stage. The minimum dead-time of TDL TDCs is two clock cycles. The proposed architecture reduced dead-time to one clock cycle. The measurement results of the proposed low-resources TDC in an Artix-7 FPGA show [-0.80, 1.34] LSB differential nonlinearity (DNL) and [-0.73, 1.97] LSB integral non-linearity (INL). The measured LSB size and single-shot precision (SSP) are 22.1 ps and 28.43 ps, respectively.\",\"PeriodicalId\":291826,\"journal\":{\"name\":\"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBCCSP53293.2021.9502401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBCCSP53293.2021.9502401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Approach for Measurement Throughput Maximization in FPGA-based TDCs
This paper presents a new approach for dead-time minimization while preserving low resource usage and high resolution in FPGA-based time-to-digital (TDC) converters. The proposed TDC architecture can be employed in applications in which many events need to be detected in a short time, such as time-of-flight positron emission tomography (ToF-PET) applications. The presented architecture consists of a toggling input stage, a tapped delay line (TDL), a dual-mode counter-based encoder, a coarse counter, and a bin width calibration stage. The minimum dead-time of TDL TDCs is two clock cycles. The proposed architecture reduced dead-time to one clock cycle. The measurement results of the proposed low-resources TDC in an Artix-7 FPGA show [-0.80, 1.34] LSB differential nonlinearity (DNL) and [-0.73, 1.97] LSB integral non-linearity (INL). The measured LSB size and single-shot precision (SSP) are 22.1 ps and 28.43 ps, respectively.