林中最小总支配集的最大数目

Michael A. Henning, Elena Mohr, D. Rautenbach
{"title":"林中最小总支配集的最大数目","authors":"Michael A. Henning, Elena Mohr, D. Rautenbach","doi":"10.23638/DMTCS-21-3-3","DOIUrl":null,"url":null,"abstract":"Fricke, Hedetniemi, Hedetniemi, and Hutson asked whether every tree with domination number $\\gamma$ has at most $2^\\gamma$ minimum dominating sets. Bien gave a counterexample, which allows to construct forests with domination number $\\gamma$ and $2.0598^\\gamma$ minimum dominating sets. We show that every forest with domination number $\\gamma$ has at most $2.4606^\\gamma$ minimum dominating sets, and that every tree with independence number $\\alpha$ has at most $2^{\\alpha-1}+1$ maximum independent sets.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On the maximum number of minimum total dominating sets in forests\",\"authors\":\"Michael A. Henning, Elena Mohr, D. Rautenbach\",\"doi\":\"10.23638/DMTCS-21-3-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fricke, Hedetniemi, Hedetniemi, and Hutson asked whether every tree with domination number $\\\\gamma$ has at most $2^\\\\gamma$ minimum dominating sets. Bien gave a counterexample, which allows to construct forests with domination number $\\\\gamma$ and $2.0598^\\\\gamma$ minimum dominating sets. We show that every forest with domination number $\\\\gamma$ has at most $2.4606^\\\\gamma$ minimum dominating sets, and that every tree with independence number $\\\\alpha$ has at most $2^{\\\\alpha-1}+1$ maximum independent sets.\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23638/DMTCS-21-3-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23638/DMTCS-21-3-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

Fricke, Hedetniemi, Hedetniemi和Hutson问是否每棵支配数为$\gamma$的树都有最多$2^\gamma$个最小支配集。Bien给出了一个反例,它允许构造具有支配数$\gamma$和$2.0598^\gamma$最小支配集的森林。我们证明了支配数为$\gamma$的每个森林最多有$2.4606^\gamma$个最小支配集,独立数为$\alpha$的每棵树最多有$2^{\alpha-1}+1$个最大独立集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the maximum number of minimum total dominating sets in forests
Fricke, Hedetniemi, Hedetniemi, and Hutson asked whether every tree with domination number $\gamma$ has at most $2^\gamma$ minimum dominating sets. Bien gave a counterexample, which allows to construct forests with domination number $\gamma$ and $2.0598^\gamma$ minimum dominating sets. We show that every forest with domination number $\gamma$ has at most $2.4606^\gamma$ minimum dominating sets, and that every tree with independence number $\alpha$ has at most $2^{\alpha-1}+1$ maximum independent sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信