基于二维最大模糊熵和智能遗传算法的红外图像分割

Jin Wu, Juan Li, Jian Liu, J. Tian
{"title":"基于二维最大模糊熵和智能遗传算法的红外图像分割","authors":"Jin Wu, Juan Li, Jian Liu, J. Tian","doi":"10.1109/ICIMA.2004.1384223","DOIUrl":null,"url":null,"abstract":"AbsimctThis paper presents a fast and effective segmentation. method for Forward Looking Infra-Red (FLIR) 1magei-based:on fuzzy filtering, the principle of 2-D maximum fuzzy entropy. and. intelligent genetic algorithm. A new fuzzy operator is applied Wthe enhancement of noisy images. Basing on fuzzy relation and maximum l u n y entropy principle, we perform fnzzy partition on a 2-D histogram. A new intelligent genetic algorithm (IGA), which applies an intelligent crossover (IC) based on orthogonal arrays (OAS), Is proposed to search the .optimal wmbination of the fumy parsmetem finally used to segment the image. Experiment results show that the proposed method can depress the Gaussian (-like) noise effectively, segment the infrared image automatically and properly, and i s faster than the conventional genetic algorithm and exhaustive search.","PeriodicalId":375056,"journal":{"name":"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared image segmentation based on 2-D maximum fuzzy entropy and intelligent genetic algorithm\",\"authors\":\"Jin Wu, Juan Li, Jian Liu, J. Tian\",\"doi\":\"10.1109/ICIMA.2004.1384223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbsimctThis paper presents a fast and effective segmentation. method for Forward Looking Infra-Red (FLIR) 1magei-based:on fuzzy filtering, the principle of 2-D maximum fuzzy entropy. and. intelligent genetic algorithm. A new fuzzy operator is applied Wthe enhancement of noisy images. Basing on fuzzy relation and maximum l u n y entropy principle, we perform fnzzy partition on a 2-D histogram. A new intelligent genetic algorithm (IGA), which applies an intelligent crossover (IC) based on orthogonal arrays (OAS), Is proposed to search the .optimal wmbination of the fumy parsmetem finally used to segment the image. Experiment results show that the proposed method can depress the Gaussian (-like) noise effectively, segment the infrared image automatically and properly, and i s faster than the conventional genetic algorithm and exhaustive search.\",\"PeriodicalId\":375056,\"journal\":{\"name\":\"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMA.2004.1384223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMA.2004.1384223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了一种快速有效的分割方法。基于模糊滤波、二维最大模糊熵原理的前视红外(FLIR)成像方法。和。智能遗传算法。采用一种新的模糊算子对噪声图像进行增强。基于模糊关系和最大熵原理,对二维直方图进行模糊划分。提出了一种新的智能遗传算法(IGA),该算法采用基于正交阵列(OAS)的智能交叉(IC)来搜索图像参数的最优组合,最终用于图像分割。实验结果表明,该方法能有效地抑制高斯类噪声,实现红外图像的自动准确分割,并且比传统的遗传算法和穷举搜索算法更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared image segmentation based on 2-D maximum fuzzy entropy and intelligent genetic algorithm
AbsimctThis paper presents a fast and effective segmentation. method for Forward Looking Infra-Red (FLIR) 1magei-based:on fuzzy filtering, the principle of 2-D maximum fuzzy entropy. and. intelligent genetic algorithm. A new fuzzy operator is applied Wthe enhancement of noisy images. Basing on fuzzy relation and maximum l u n y entropy principle, we perform fnzzy partition on a 2-D histogram. A new intelligent genetic algorithm (IGA), which applies an intelligent crossover (IC) based on orthogonal arrays (OAS), Is proposed to search the .optimal wmbination of the fumy parsmetem finally used to segment the image. Experiment results show that the proposed method can depress the Gaussian (-like) noise effectively, segment the infrared image automatically and properly, and i s faster than the conventional genetic algorithm and exhaustive search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信