{"title":"关于限制反转序列最近等价的进一步枚举结果","authors":"T. Mansour, M. Shattuck","doi":"10.46298/dmtcs.8330","DOIUrl":null,"url":null,"abstract":"Let asc and desc denote respectively the statistics recording the number of ascents or descents in a sequence having non-negative integer entries. In a recent paper by Andrews and Chern, it was shown that the distribution of asc on the inversion sequence avoidance class $I_n(\\geq,\\neq,>)$ is the same as that of $n-1-\\text{asc}$ on the class $I_n(>,\\neq,\\geq)$, which confirmed an earlier conjecture of Lin. In this paper, we consider some further enumerative aspects related to this equivalence and, as a consequence, provide an alternative proof of the conjecture. In particular, we find recurrence relations for the joint distribution on $I_n(\\geq,\\neq,>)$ of asc and desc along with two other parameters, and do the same for $n-1-\\text{asc}$ and desc on $I_n(>,\\neq,\\geq)$. By employing a functional equation approach together with the kernel method, we are able to compute explicitly the generating function for both of the aforementioned joint distributions, which extends (and provides a new proof of) the recent result $|I_n(\\geq,\\neq,>)|=|I_n(>,\\neq,\\geq)|$. In both cases, an algorithm is formulated for computing the generating function of the asc distribution on members of each respective class having a fixed number of descents.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Further enumeration results concerning a recent equivalence of restricted inversion sequences\",\"authors\":\"T. Mansour, M. Shattuck\",\"doi\":\"10.46298/dmtcs.8330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let asc and desc denote respectively the statistics recording the number of ascents or descents in a sequence having non-negative integer entries. In a recent paper by Andrews and Chern, it was shown that the distribution of asc on the inversion sequence avoidance class $I_n(\\\\geq,\\\\neq,>)$ is the same as that of $n-1-\\\\text{asc}$ on the class $I_n(>,\\\\neq,\\\\geq)$, which confirmed an earlier conjecture of Lin. In this paper, we consider some further enumerative aspects related to this equivalence and, as a consequence, provide an alternative proof of the conjecture. In particular, we find recurrence relations for the joint distribution on $I_n(\\\\geq,\\\\neq,>)$ of asc and desc along with two other parameters, and do the same for $n-1-\\\\text{asc}$ and desc on $I_n(>,\\\\neq,\\\\geq)$. By employing a functional equation approach together with the kernel method, we are able to compute explicitly the generating function for both of the aforementioned joint distributions, which extends (and provides a new proof of) the recent result $|I_n(\\\\geq,\\\\neq,>)|=|I_n(>,\\\\neq,\\\\geq)|$. In both cases, an algorithm is formulated for computing the generating function of the asc distribution on members of each respective class having a fixed number of descents.\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.8330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.8330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Further enumeration results concerning a recent equivalence of restricted inversion sequences
Let asc and desc denote respectively the statistics recording the number of ascents or descents in a sequence having non-negative integer entries. In a recent paper by Andrews and Chern, it was shown that the distribution of asc on the inversion sequence avoidance class $I_n(\geq,\neq,>)$ is the same as that of $n-1-\text{asc}$ on the class $I_n(>,\neq,\geq)$, which confirmed an earlier conjecture of Lin. In this paper, we consider some further enumerative aspects related to this equivalence and, as a consequence, provide an alternative proof of the conjecture. In particular, we find recurrence relations for the joint distribution on $I_n(\geq,\neq,>)$ of asc and desc along with two other parameters, and do the same for $n-1-\text{asc}$ and desc on $I_n(>,\neq,\geq)$. By employing a functional equation approach together with the kernel method, we are able to compute explicitly the generating function for both of the aforementioned joint distributions, which extends (and provides a new proof of) the recent result $|I_n(\geq,\neq,>)|=|I_n(>,\neq,\geq)|$. In both cases, an algorithm is formulated for computing the generating function of the asc distribution on members of each respective class having a fixed number of descents.