{"title":"未来的精炼厂——精炼厂作为能源枢纽","authors":"E. Jansen","doi":"10.2118/198184-ms","DOIUrl":null,"url":null,"abstract":"\n This paper presents the study of the European Petroleum Refiners Association into various pathways to produce a low-carbon liquid fuel to reduce the greenhouse gas (GHG) intensity in European transport.\n The European Union has set climate goals targeting 80-95 % GHG emission reductions by 2050. There is a strong focus on reducing CO2 emissions from transport fuels. Refining industry can effectively contribute by gradually transitioning to e.g. new feedstock's hence reducing product-related CO2 emissions (in combination with more efficient vehicles); integration with chemicals; further increasing CO2 efficiency in refineries and Green Hydrogen. The Concawe study explores these so-called Low-Carbon Pathways with the potential to reduce the CO2 emissions associated with the production and the use refined oil products [Concawe, 2018].\n Options for CO2 emission reduction in refining are e.g. energy efficiency, low carbon electricity and carbon-capture & storage (CCS) and carbon-capture & usage (CCU). CO2 emissions savings up to 70 % towards 2050 could be possible. Other pathways explored for future refining are e.g. the use of green hydrogen and the impact of fuel quality and bio-feedstock into the refinery. The use of advanced biofuels will play a significant role in the reduction of greenhouse gas emissions in transport.\n This paper being a summary of the FuelsEurope Vision 2050 [FuelsEurope, 2018] presents the latest results of the ongoing study by Concawe showing possible pathways and CO2 reduction potential for EU refining, site-specific factors will determine individual refineries preferred routes to contribute. The principles are generally applicable to refineries in other parts of the world.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refineries of the Future – The Refinery as an ENERGY HUB\",\"authors\":\"E. Jansen\",\"doi\":\"10.2118/198184-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents the study of the European Petroleum Refiners Association into various pathways to produce a low-carbon liquid fuel to reduce the greenhouse gas (GHG) intensity in European transport.\\n The European Union has set climate goals targeting 80-95 % GHG emission reductions by 2050. There is a strong focus on reducing CO2 emissions from transport fuels. Refining industry can effectively contribute by gradually transitioning to e.g. new feedstock's hence reducing product-related CO2 emissions (in combination with more efficient vehicles); integration with chemicals; further increasing CO2 efficiency in refineries and Green Hydrogen. The Concawe study explores these so-called Low-Carbon Pathways with the potential to reduce the CO2 emissions associated with the production and the use refined oil products [Concawe, 2018].\\n Options for CO2 emission reduction in refining are e.g. energy efficiency, low carbon electricity and carbon-capture & storage (CCS) and carbon-capture & usage (CCU). CO2 emissions savings up to 70 % towards 2050 could be possible. Other pathways explored for future refining are e.g. the use of green hydrogen and the impact of fuel quality and bio-feedstock into the refinery. The use of advanced biofuels will play a significant role in the reduction of greenhouse gas emissions in transport.\\n This paper being a summary of the FuelsEurope Vision 2050 [FuelsEurope, 2018] presents the latest results of the ongoing study by Concawe showing possible pathways and CO2 reduction potential for EU refining, site-specific factors will determine individual refineries preferred routes to contribute. The principles are generally applicable to refineries in other parts of the world.\",\"PeriodicalId\":282370,\"journal\":{\"name\":\"Day 2 Mon, October 14, 2019\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, October 14, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/198184-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, October 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/198184-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Refineries of the Future – The Refinery as an ENERGY HUB
This paper presents the study of the European Petroleum Refiners Association into various pathways to produce a low-carbon liquid fuel to reduce the greenhouse gas (GHG) intensity in European transport.
The European Union has set climate goals targeting 80-95 % GHG emission reductions by 2050. There is a strong focus on reducing CO2 emissions from transport fuels. Refining industry can effectively contribute by gradually transitioning to e.g. new feedstock's hence reducing product-related CO2 emissions (in combination with more efficient vehicles); integration with chemicals; further increasing CO2 efficiency in refineries and Green Hydrogen. The Concawe study explores these so-called Low-Carbon Pathways with the potential to reduce the CO2 emissions associated with the production and the use refined oil products [Concawe, 2018].
Options for CO2 emission reduction in refining are e.g. energy efficiency, low carbon electricity and carbon-capture & storage (CCS) and carbon-capture & usage (CCU). CO2 emissions savings up to 70 % towards 2050 could be possible. Other pathways explored for future refining are e.g. the use of green hydrogen and the impact of fuel quality and bio-feedstock into the refinery. The use of advanced biofuels will play a significant role in the reduction of greenhouse gas emissions in transport.
This paper being a summary of the FuelsEurope Vision 2050 [FuelsEurope, 2018] presents the latest results of the ongoing study by Concawe showing possible pathways and CO2 reduction potential for EU refining, site-specific factors will determine individual refineries preferred routes to contribute. The principles are generally applicable to refineries in other parts of the world.