多摄像头协同跌倒检测

Jian-Chiuan Hou, Weimin Xu, Yuanyuan Chu, Chih-Lin Hu, Ying-Hong Chen, Shi Chen, Lin Hui
{"title":"多摄像头协同跌倒检测","authors":"Jian-Chiuan Hou, Weimin Xu, Yuanyuan Chu, Chih-Lin Hu, Ying-Hong Chen, Shi Chen, Lin Hui","doi":"10.1109/ICCE-Taiwan55306.2022.9869279","DOIUrl":null,"url":null,"abstract":"We propose a fall detection mechanism based on multi-camera cooperation in home space. Cameras capture image-based falling events, and self-organize a group using deep reinforcement learning. Neighbor cameras exchange sensing data and statuses in local network proximity. With information sharing in a group, cameras can improve the accuracy of decision making on falling events and cope with the limited fields of view against physical deployment of cameras in residential areas.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cooperative Fall Detection with Multiple Cameras\",\"authors\":\"Jian-Chiuan Hou, Weimin Xu, Yuanyuan Chu, Chih-Lin Hu, Ying-Hong Chen, Shi Chen, Lin Hui\",\"doi\":\"10.1109/ICCE-Taiwan55306.2022.9869279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fall detection mechanism based on multi-camera cooperation in home space. Cameras capture image-based falling events, and self-organize a group using deep reinforcement learning. Neighbor cameras exchange sensing data and statuses in local network proximity. With information sharing in a group, cameras can improve the accuracy of decision making on falling events and cope with the limited fields of view against physical deployment of cameras in residential areas.\",\"PeriodicalId\":164671,\"journal\":{\"name\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于家庭空间多摄像头协同的跌倒检测机制。相机捕捉基于图像的坠落事件,并使用深度强化学习自组织一个群体。相邻摄像机在本地网络邻近中交换传感数据和状态。通过一组信息共享,摄像头可以提高对坠落事件决策的准确性,并应对在居民区部署摄像头的有限视野。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative Fall Detection with Multiple Cameras
We propose a fall detection mechanism based on multi-camera cooperation in home space. Cameras capture image-based falling events, and self-organize a group using deep reinforcement learning. Neighbor cameras exchange sensing data and statuses in local network proximity. With information sharing in a group, cameras can improve the accuracy of decision making on falling events and cope with the limited fields of view against physical deployment of cameras in residential areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信