M. Malusis, A. Dominijanni, J. Scalia, N. Guarena, K. Sample-Lord, G. Bohnhoff, C. Shackelford, M. Manassero
{"title":"基于现象学和物理模型的化学渗透对膨润土膜中溶质迁移的影响评估","authors":"M. Malusis, A. Dominijanni, J. Scalia, N. Guarena, K. Sample-Lord, G. Bohnhoff, C. Shackelford, M. Manassero","doi":"10.3208/jgssp.v09.cpeg023","DOIUrl":null,"url":null,"abstract":"The ability of bentonite-based barriers to act as semipermeable membranes that inhibit the passage of solutes (ions) is well documented. This behavior induces chemico-osmotic liquid flux that can improve the performance of such barriers by reducing solute mass flux. This paper explores the potential significance of chemico-osmosis on solute transport through bentonite membranes using a phenomenological transport framework combined with a physical model relating the macroscale transport properties (membrane efficiency coefficient, , and hydraulic conductivity, k h ) to the microscale physicochemical and fabric properties of the bentonite. The model was used to simulate the coupled transport of monovalent salt (KCl) through a geosynthetic clay liner. The results indicate that the influence of chemico-osmosis is dependent upon the void ratio of the bentonite and the extent to which clay platelets are aggregated to form tactoids. Chemico-osmosis is predicted to have an increasingly more significant impact on solute transport with increasing source concentration ( C s0 ), despite decreasing with increasing C","PeriodicalId":283909,"journal":{"name":"Japanese Geotechnical Society Special Publication","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessing the influence of chemico-osmosis on solute transport in bentonite membranes based on combined phenomenological and physical modeling\",\"authors\":\"M. Malusis, A. Dominijanni, J. Scalia, N. Guarena, K. Sample-Lord, G. Bohnhoff, C. Shackelford, M. Manassero\",\"doi\":\"10.3208/jgssp.v09.cpeg023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability of bentonite-based barriers to act as semipermeable membranes that inhibit the passage of solutes (ions) is well documented. This behavior induces chemico-osmotic liquid flux that can improve the performance of such barriers by reducing solute mass flux. This paper explores the potential significance of chemico-osmosis on solute transport through bentonite membranes using a phenomenological transport framework combined with a physical model relating the macroscale transport properties (membrane efficiency coefficient, , and hydraulic conductivity, k h ) to the microscale physicochemical and fabric properties of the bentonite. The model was used to simulate the coupled transport of monovalent salt (KCl) through a geosynthetic clay liner. The results indicate that the influence of chemico-osmosis is dependent upon the void ratio of the bentonite and the extent to which clay platelets are aggregated to form tactoids. Chemico-osmosis is predicted to have an increasingly more significant impact on solute transport with increasing source concentration ( C s0 ), despite decreasing with increasing C\",\"PeriodicalId\":283909,\"journal\":{\"name\":\"Japanese Geotechnical Society Special Publication\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Geotechnical Society Special Publication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3208/jgssp.v09.cpeg023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Geotechnical Society Special Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3208/jgssp.v09.cpeg023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing the influence of chemico-osmosis on solute transport in bentonite membranes based on combined phenomenological and physical modeling
The ability of bentonite-based barriers to act as semipermeable membranes that inhibit the passage of solutes (ions) is well documented. This behavior induces chemico-osmotic liquid flux that can improve the performance of such barriers by reducing solute mass flux. This paper explores the potential significance of chemico-osmosis on solute transport through bentonite membranes using a phenomenological transport framework combined with a physical model relating the macroscale transport properties (membrane efficiency coefficient, , and hydraulic conductivity, k h ) to the microscale physicochemical and fabric properties of the bentonite. The model was used to simulate the coupled transport of monovalent salt (KCl) through a geosynthetic clay liner. The results indicate that the influence of chemico-osmosis is dependent upon the void ratio of the bentonite and the extent to which clay platelets are aggregated to form tactoids. Chemico-osmosis is predicted to have an increasingly more significant impact on solute transport with increasing source concentration ( C s0 ), despite decreasing with increasing C