稀疏点过程的自适应周期估计

Hans-Peter Bernhard, A. Springer
{"title":"稀疏点过程的自适应周期估计","authors":"Hans-Peter Bernhard, A. Springer","doi":"10.1109/SSP.2018.8450856","DOIUrl":null,"url":null,"abstract":"In this paper, adaptive period estimation for time varying sparse point processes is addressed. Sparsity results from signal loss, which reduces the number of samples available for period estimation. We discuss bounds and minima of the mean square error of fundamental period estimation suitable in these situations. A ruleset is derived to determine the optimum memory length which achieves the minimum estimation error. The used low complex adaptive algorithm operates with variable memory length N to fit optimally for the recorded time varying process. The algorithm is of complexity $3\\mathcal {O}(N)$, in addition to that the overall complexity is reduced to $3\\mathcal {O}(1)$, if a recursive implementation is applied. This algorithm is the optimal implementation candidate to keep synchronicity in industrial wireless sensor networks operating in harsh and time varying environments.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Period Estimation For Sparse Point Processes\",\"authors\":\"Hans-Peter Bernhard, A. Springer\",\"doi\":\"10.1109/SSP.2018.8450856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, adaptive period estimation for time varying sparse point processes is addressed. Sparsity results from signal loss, which reduces the number of samples available for period estimation. We discuss bounds and minima of the mean square error of fundamental period estimation suitable in these situations. A ruleset is derived to determine the optimum memory length which achieves the minimum estimation error. The used low complex adaptive algorithm operates with variable memory length N to fit optimally for the recorded time varying process. The algorithm is of complexity $3\\\\mathcal {O}(N)$, in addition to that the overall complexity is reduced to $3\\\\mathcal {O}(1)$, if a recursive implementation is applied. This algorithm is the optimal implementation candidate to keep synchronicity in industrial wireless sensor networks operating in harsh and time varying environments.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了时变稀疏点过程的自适应周期估计问题。稀疏性是由信号丢失引起的,这减少了可用于周期估计的样本数量。讨论了适用于这种情况的基本周期估计均方误差的取值范围和最小值。导出了一个规则集来确定达到最小估计误差的最佳内存长度。所采用的低复杂度自适应算法以可变存储器长度N来最优地适应所记录的时变过程。该算法的复杂度为$3\mathcal {O}(N)$,除此之外,如果应用递归实现,则总复杂度降低到$3\mathcal {O}(1)$。该算法是在恶劣时变环境下保持工业无线传感器网络同步性的最佳实现候选算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Period Estimation For Sparse Point Processes
In this paper, adaptive period estimation for time varying sparse point processes is addressed. Sparsity results from signal loss, which reduces the number of samples available for period estimation. We discuss bounds and minima of the mean square error of fundamental period estimation suitable in these situations. A ruleset is derived to determine the optimum memory length which achieves the minimum estimation error. The used low complex adaptive algorithm operates with variable memory length N to fit optimally for the recorded time varying process. The algorithm is of complexity $3\mathcal {O}(N)$, in addition to that the overall complexity is reduced to $3\mathcal {O}(1)$, if a recursive implementation is applied. This algorithm is the optimal implementation candidate to keep synchronicity in industrial wireless sensor networks operating in harsh and time varying environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信