分数阶PID控制器的广义鲁棒稳定区域

M. Cech, M. Schlegel
{"title":"分数阶PID控制器的广义鲁棒稳定区域","authors":"M. Cech, M. Schlegel","doi":"10.1109/ICIT.2013.6505651","DOIUrl":null,"url":null,"abstract":"Fractional-order PID controller (FOPID) design and implementation is one of emerging research areas. This paper presents a method for computing generalized robust stability regions in controller parameter plane. The method can cope with arbitrary linear process model of integer or fractional order. It allows to fulfill essential frequency domain design specifications, namely gain and phase margins, closed loop bandwidth, etc. Further, it can operate simultaneously with number of processes hence can work with uncertainty given e.g. by model set or by parameter intervals. Moreover, the regions can be computed even for selected filter in derivative part of the FOPID controller. The method described is partly available in the interactive Java applet freely accessible at www.pidlab.com. The illustrative example demonstrates that FOPID controller can fulfill stricter design specifications compared to traditional PID.","PeriodicalId":192784,"journal":{"name":"2013 IEEE International Conference on Industrial Technology (ICIT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Generalized robust stability regions for fractional PID controllers\",\"authors\":\"M. Cech, M. Schlegel\",\"doi\":\"10.1109/ICIT.2013.6505651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional-order PID controller (FOPID) design and implementation is one of emerging research areas. This paper presents a method for computing generalized robust stability regions in controller parameter plane. The method can cope with arbitrary linear process model of integer or fractional order. It allows to fulfill essential frequency domain design specifications, namely gain and phase margins, closed loop bandwidth, etc. Further, it can operate simultaneously with number of processes hence can work with uncertainty given e.g. by model set or by parameter intervals. Moreover, the regions can be computed even for selected filter in derivative part of the FOPID controller. The method described is partly available in the interactive Java applet freely accessible at www.pidlab.com. The illustrative example demonstrates that FOPID controller can fulfill stricter design specifications compared to traditional PID.\",\"PeriodicalId\":192784,\"journal\":{\"name\":\"2013 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2013.6505651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2013.6505651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

分数阶PID控制器(FOPID)的设计与实现是一个新兴的研究领域。提出了一种计算控制器参数平面广义鲁棒稳定区域的方法。该方法可以处理任意整数阶或分数阶线性过程模型。它可以满足基本的频域设计规范,即增益和相位裕度,闭环带宽等。此外,它可以与多个过程同时运行,因此可以在模型集或参数间隔给定的不确定性下工作。此外,在FOPID控制器的导数部分,即使选择滤波器,也可以计算出区域。所描述的方法在交互式Java applet中部分可用,可从www.pidlab.com免费访问。算例表明,与传统PID相比,FOPID控制器可以满足更严格的设计要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized robust stability regions for fractional PID controllers
Fractional-order PID controller (FOPID) design and implementation is one of emerging research areas. This paper presents a method for computing generalized robust stability regions in controller parameter plane. The method can cope with arbitrary linear process model of integer or fractional order. It allows to fulfill essential frequency domain design specifications, namely gain and phase margins, closed loop bandwidth, etc. Further, it can operate simultaneously with number of processes hence can work with uncertainty given e.g. by model set or by parameter intervals. Moreover, the regions can be computed even for selected filter in derivative part of the FOPID controller. The method described is partly available in the interactive Java applet freely accessible at www.pidlab.com. The illustrative example demonstrates that FOPID controller can fulfill stricter design specifications compared to traditional PID.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信