{"title":"基于有限元法的六相磁阻直流电机等效电路参数辨识","authors":"E. Rakgati, M. Kamper","doi":"10.1109/IEMDC.2007.382795","DOIUrl":null,"url":null,"abstract":"Abstract-In this paper a per phase equivalent circuit model of the reluctance DC machine is investigated. The equivalent circuit parameters are identified through finite element analysis for both no-load and load conditions. The model is verified by comparing, amongst other things, the torque calculated from the determined equivalent circuit with the torque calculated by the finite element Maxwell stress tensor method and the measured static torque of a 35 kW reluctance DC machine drive. It is shown that the equivalent circuit parameters are severely affected by the phase current commutation under full load and the armature reaction effect.","PeriodicalId":446844,"journal":{"name":"2007 IEEE International Electric Machines & Drives Conference","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Equivalent Circuit Parameter Identification of Six-Phase Reluctance DC Machine Using Finite Element Method\",\"authors\":\"E. Rakgati, M. Kamper\",\"doi\":\"10.1109/IEMDC.2007.382795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract-In this paper a per phase equivalent circuit model of the reluctance DC machine is investigated. The equivalent circuit parameters are identified through finite element analysis for both no-load and load conditions. The model is verified by comparing, amongst other things, the torque calculated from the determined equivalent circuit with the torque calculated by the finite element Maxwell stress tensor method and the measured static torque of a 35 kW reluctance DC machine drive. It is shown that the equivalent circuit parameters are severely affected by the phase current commutation under full load and the armature reaction effect.\",\"PeriodicalId\":446844,\"journal\":{\"name\":\"2007 IEEE International Electric Machines & Drives Conference\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Electric Machines & Drives Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC.2007.382795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Electric Machines & Drives Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2007.382795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Equivalent Circuit Parameter Identification of Six-Phase Reluctance DC Machine Using Finite Element Method
Abstract-In this paper a per phase equivalent circuit model of the reluctance DC machine is investigated. The equivalent circuit parameters are identified through finite element analysis for both no-load and load conditions. The model is verified by comparing, amongst other things, the torque calculated from the determined equivalent circuit with the torque calculated by the finite element Maxwell stress tensor method and the measured static torque of a 35 kW reluctance DC machine drive. It is shown that the equivalent circuit parameters are severely affected by the phase current commutation under full load and the armature reaction effect.