优化嵌套循环结构上的并行PREM编译

Zhao Gu, R. Pellizzoni
{"title":"优化嵌套循环结构上的并行PREM编译","authors":"Zhao Gu, R. Pellizzoni","doi":"10.1145/3489517.3530610","DOIUrl":null,"url":null,"abstract":"We consider automatic parallelization of a computational kernel executed according to the PRedictable Execution Model (PREM), where each thread is divided into execution and memory phases. We target a scratchpad-based architecture, where memory phases are executed by a dedicated DMA component. We employ data analysis and loop tiling to split the kernel execution into segments, and schedule them based on a DAG representation of data and execution dependencies. Our main observation is that properly selecting tile sizes is key to optimize the makespan of the kernel. We thus propose a heuristic that efficiently searches for optimized tile size and core assignments over deeply nested loops, and demonstrate its applicability and performance compared to the state-of-the-art in PREM compilation using the PolyBench-NN benchmark suite.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing parallel PREM compilation over nested loop structures\",\"authors\":\"Zhao Gu, R. Pellizzoni\",\"doi\":\"10.1145/3489517.3530610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider automatic parallelization of a computational kernel executed according to the PRedictable Execution Model (PREM), where each thread is divided into execution and memory phases. We target a scratchpad-based architecture, where memory phases are executed by a dedicated DMA component. We employ data analysis and loop tiling to split the kernel execution into segments, and schedule them based on a DAG representation of data and execution dependencies. Our main observation is that properly selecting tile sizes is key to optimize the makespan of the kernel. We thus propose a heuristic that efficiently searches for optimized tile size and core assignments over deeply nested loops, and demonstrate its applicability and performance compared to the state-of-the-art in PREM compilation using the PolyBench-NN benchmark suite.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑根据可预测执行模型(PREM)执行的计算内核的自动并行化,其中每个线程分为执行阶段和内存阶段。我们的目标是基于刮擦板的架构,其中内存阶段由专用的DMA组件执行。我们使用数据分析和循环平铺将内核执行分割成段,并根据数据和执行依赖关系的DAG表示对它们进行调度。我们的主要观察是,正确选择tile大小是优化内核makespan的关键。因此,我们提出了一种启发式方法,可以在深度嵌套循环中有效地搜索优化的tile大小和核心分配,并使用PolyBench-NN基准套件与最先进的PREM编译相比,展示其适用性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing parallel PREM compilation over nested loop structures
We consider automatic parallelization of a computational kernel executed according to the PRedictable Execution Model (PREM), where each thread is divided into execution and memory phases. We target a scratchpad-based architecture, where memory phases are executed by a dedicated DMA component. We employ data analysis and loop tiling to split the kernel execution into segments, and schedule them based on a DAG representation of data and execution dependencies. Our main observation is that properly selecting tile sizes is key to optimize the makespan of the kernel. We thus propose a heuristic that efficiently searches for optimized tile size and core assignments over deeply nested loops, and demonstrate its applicability and performance compared to the state-of-the-art in PREM compilation using the PolyBench-NN benchmark suite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信