多云环境下基于预测负载均衡方法的资源分配

S. Sindhura
{"title":"多云环境下基于预测负载均衡方法的资源分配","authors":"S. Sindhura","doi":"10.2139/ssrn.3690113","DOIUrl":null,"url":null,"abstract":"Cloud computing gives a support to purchasers to lessen their internal establishment, and for providers to extend wages, using their own specific system. The best possible burden adjusting and dynamic asset provisioning improves cloud execution and draws in the cloud clients. In this paper, we propose a mechanized asset provisioning calculation, Speculation asset provisioning, inciting load adjusting through theoretical methodology in asset provisioning. As an endeavor to measure asset portion we utilize two level versatile expectation component to check the computational examples of past asset distribution to the future necessity. The structure ensures reasonable assets required for the application, by avoiding over or under-provisioning of asset and supports vitality effectiveness in asset distribution. We use estimation system to address the fluctuation in the verifiable information to adjust the theory overhead. We have passed on our proposed work in an open source cloud structure and differentiated our results and other AI draws near. Our Experimental outcomes show versatile asset designation over client driven help the executives under the quickly changing necessities of cloud computing.","PeriodicalId":363330,"journal":{"name":"Computation Theory eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resource Allocation Based on Predictive Load Balancing Approach in Multi Cloud Environment\",\"authors\":\"S. Sindhura\",\"doi\":\"10.2139/ssrn.3690113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing gives a support to purchasers to lessen their internal establishment, and for providers to extend wages, using their own specific system. The best possible burden adjusting and dynamic asset provisioning improves cloud execution and draws in the cloud clients. In this paper, we propose a mechanized asset provisioning calculation, Speculation asset provisioning, inciting load adjusting through theoretical methodology in asset provisioning. As an endeavor to measure asset portion we utilize two level versatile expectation component to check the computational examples of past asset distribution to the future necessity. The structure ensures reasonable assets required for the application, by avoiding over or under-provisioning of asset and supports vitality effectiveness in asset distribution. We use estimation system to address the fluctuation in the verifiable information to adjust the theory overhead. We have passed on our proposed work in an open source cloud structure and differentiated our results and other AI draws near. Our Experimental outcomes show versatile asset designation over client driven help the executives under the quickly changing necessities of cloud computing.\",\"PeriodicalId\":363330,\"journal\":{\"name\":\"Computation Theory eJournal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation Theory eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3690113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation Theory eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3690113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

云计算为购买者提供了一种支持,以减少他们的内部设置,并为供应商提供了一种支持,以扩大工资,使用自己的特定系统。最好的负担调整和动态资产配置可以改善云执行并吸引云客户端。本文通过资产配置中的理论方法,提出了一种机械化的资产配置计算方法,即投机资产配置、刺激负荷调整。作为衡量资产比例的一种尝试,我们利用两级通用期望分量来检验过去资产分布对未来必要性的计算实例。该结构保证了应用所需资产的合理性,避免了资产的过剩或不足,支持了资产分配的生命力和有效性。我们使用估计系统来处理可验证信息的波动,以调整理论开销。我们已经通过了我们在开源云结构中提出的工作,并将我们的结果与其他人工智能区分开来。我们的实验结果表明,在快速变化的云计算需求下,灵活的资产指定优于客户驱动的管理人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource Allocation Based on Predictive Load Balancing Approach in Multi Cloud Environment
Cloud computing gives a support to purchasers to lessen their internal establishment, and for providers to extend wages, using their own specific system. The best possible burden adjusting and dynamic asset provisioning improves cloud execution and draws in the cloud clients. In this paper, we propose a mechanized asset provisioning calculation, Speculation asset provisioning, inciting load adjusting through theoretical methodology in asset provisioning. As an endeavor to measure asset portion we utilize two level versatile expectation component to check the computational examples of past asset distribution to the future necessity. The structure ensures reasonable assets required for the application, by avoiding over or under-provisioning of asset and supports vitality effectiveness in asset distribution. We use estimation system to address the fluctuation in the verifiable information to adjust the theory overhead. We have passed on our proposed work in an open source cloud structure and differentiated our results and other AI draws near. Our Experimental outcomes show versatile asset designation over client driven help the executives under the quickly changing necessities of cloud computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信