蕴涵场中具有等势平面阈值的协同过滤推荐

H. T. Nguyen, H. Huynh, H. Huynh
{"title":"蕴涵场中具有等势平面阈值的协同过滤推荐","authors":"H. T. Nguyen, H. Huynh, H. Huynh","doi":"10.1145/3184066.3184072","DOIUrl":null,"url":null,"abstract":"Collaborative filtering is one of the most popular and effective techniques available today in the recommender system. However, most of them use symmetric similarity measures. Therefore, the default effect and the role of the pair of users are the same, but in practice this may not be true. In addition, they only logically demonstrate the existence of a priority relationship between two users rather than the level of the relationship in practice. In this paper, we propose a new approach for the collaborative filtering based on the variation analysis of the implication index. An asymmetric measure is developed which can be used to rank or filter information based on the variation of the implication index by a counter-example. This measure provides a meaningful recommendation with a certain level of implication. Experimental results shown that the proposed approach can overcome the drawbacks in the traditional recommender systems.","PeriodicalId":109559,"journal":{"name":"International Conference on Machine Learning and Soft Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Collaborative filtering recommendation with threshold value of the equipotential plane in implication field\",\"authors\":\"H. T. Nguyen, H. Huynh, H. Huynh\",\"doi\":\"10.1145/3184066.3184072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering is one of the most popular and effective techniques available today in the recommender system. However, most of them use symmetric similarity measures. Therefore, the default effect and the role of the pair of users are the same, but in practice this may not be true. In addition, they only logically demonstrate the existence of a priority relationship between two users rather than the level of the relationship in practice. In this paper, we propose a new approach for the collaborative filtering based on the variation analysis of the implication index. An asymmetric measure is developed which can be used to rank or filter information based on the variation of the implication index by a counter-example. This measure provides a meaningful recommendation with a certain level of implication. Experimental results shown that the proposed approach can overcome the drawbacks in the traditional recommender systems.\",\"PeriodicalId\":109559,\"journal\":{\"name\":\"International Conference on Machine Learning and Soft Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3184066.3184072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184066.3184072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

协同过滤是当今推荐系统中最流行和最有效的技术之一。然而,它们大多数使用对称相似度量。因此,默认效果和这对用户的角色是相同的,但在实践中可能不是这样。此外,它们仅在逻辑上证明两个用户之间存在优先级关系,而不是在实践中证明这种关系的级别。本文提出了一种基于隐含指标变异分析的协同过滤方法。通过一个反例,提出了一种基于隐含指数变化的非对称度量方法来对信息进行排序或过滤。这一措施提供了具有一定意义的建议。实验结果表明,该方法可以克服传统推荐系统的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative filtering recommendation with threshold value of the equipotential plane in implication field
Collaborative filtering is one of the most popular and effective techniques available today in the recommender system. However, most of them use symmetric similarity measures. Therefore, the default effect and the role of the pair of users are the same, but in practice this may not be true. In addition, they only logically demonstrate the existence of a priority relationship between two users rather than the level of the relationship in practice. In this paper, we propose a new approach for the collaborative filtering based on the variation analysis of the implication index. An asymmetric measure is developed which can be used to rank or filter information based on the variation of the implication index by a counter-example. This measure provides a meaningful recommendation with a certain level of implication. Experimental results shown that the proposed approach can overcome the drawbacks in the traditional recommender systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信