{"title":"通过基于实体的文档排序改进语义搜索","authors":"Benjamin Großmann, Alexandru Todor, A. Paschke","doi":"10.1145/2797115.2797120","DOIUrl":null,"url":null,"abstract":"Traditional keyword-based IR approaches take into account the document context only in a limited manner. In our paper we present a novel document ranking approach based on the semantic relationships between named entities. In the first step we annotate all documents with named entities from a knowledge base (for example people, places and organisations). In the next step these annotations in combination with the relationships from the knowledge base are used to rank documents in order to perform a semantic search. Documents that contain the specific named entity that was searched for as well as other strongly related entities, receive a higher ranking. The inclusion of the document context in the ranking approach achieves a higher precision in the Top-K results.","PeriodicalId":386229,"journal":{"name":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Semantic Search through Entity-Based Document Ranking\",\"authors\":\"Benjamin Großmann, Alexandru Todor, A. Paschke\",\"doi\":\"10.1145/2797115.2797120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional keyword-based IR approaches take into account the document context only in a limited manner. In our paper we present a novel document ranking approach based on the semantic relationships between named entities. In the first step we annotate all documents with named entities from a knowledge base (for example people, places and organisations). In the next step these annotations in combination with the relationships from the knowledge base are used to rank documents in order to perform a semantic search. Documents that contain the specific named entity that was searched for as well as other strongly related entities, receive a higher ranking. The inclusion of the document context in the ranking approach achieves a higher precision in the Top-K results.\",\"PeriodicalId\":386229,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2797115.2797120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2797115.2797120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Semantic Search through Entity-Based Document Ranking
Traditional keyword-based IR approaches take into account the document context only in a limited manner. In our paper we present a novel document ranking approach based on the semantic relationships between named entities. In the first step we annotate all documents with named entities from a knowledge base (for example people, places and organisations). In the next step these annotations in combination with the relationships from the knowledge base are used to rank documents in order to perform a semantic search. Documents that contain the specific named entity that was searched for as well as other strongly related entities, receive a higher ranking. The inclusion of the document context in the ranking approach achieves a higher precision in the Top-K results.