基于词嵌入技术的ArabicWeb16命名实体识别实证研究

Sharefah A. Al-Ghamdi, M. Al-Duwais, Hend Suliman Al-Khalifa, A. Al-Salman
{"title":"基于词嵌入技术的ArabicWeb16命名实体识别实证研究","authors":"Sharefah A. Al-Ghamdi, M. Al-Duwais, Hend Suliman Al-Khalifa, A. Al-Salman","doi":"10.1109/NCG.2018.8593020","DOIUrl":null,"url":null,"abstract":"The 3rd Workshop on Open-Source Arabic Corpora and Processing Tools introduces ArabicWeb16 Data Challenge track. The challenge is about experimenting with ArabicWeb16 dataset, the largest Arabic Web dataset publicly available with about 150M Arabic Web pages. In this paper, we explore the ArabicWeb16 dataset and experiment with it to build word-embedding models for Named Entity Recognition (NER) task. Word-embedding models are powerful for building many Natural Language Processing (NLP) tasks including NER. We tried two word-embedding models: Google Word2Vec model and Stanford GloVe model. The two models were used to recognize similar words for each named entity type. The ArabicWeb16 dataset was somehow hard to pre-process, however, the final results showed promising outputs.","PeriodicalId":305464,"journal":{"name":"2018 21st Saudi Computer Society National Computer Conference (NCC)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Named Entity Recognition Using Word-Embedding Techniques for ArabicWeb16: An Empirical Study\",\"authors\":\"Sharefah A. Al-Ghamdi, M. Al-Duwais, Hend Suliman Al-Khalifa, A. Al-Salman\",\"doi\":\"10.1109/NCG.2018.8593020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 3rd Workshop on Open-Source Arabic Corpora and Processing Tools introduces ArabicWeb16 Data Challenge track. The challenge is about experimenting with ArabicWeb16 dataset, the largest Arabic Web dataset publicly available with about 150M Arabic Web pages. In this paper, we explore the ArabicWeb16 dataset and experiment with it to build word-embedding models for Named Entity Recognition (NER) task. Word-embedding models are powerful for building many Natural Language Processing (NLP) tasks including NER. We tried two word-embedding models: Google Word2Vec model and Stanford GloVe model. The two models were used to recognize similar words for each named entity type. The ArabicWeb16 dataset was somehow hard to pre-process, however, the final results showed promising outputs.\",\"PeriodicalId\":305464,\"journal\":{\"name\":\"2018 21st Saudi Computer Society National Computer Conference (NCC)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st Saudi Computer Society National Computer Conference (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCG.2018.8593020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st Saudi Computer Society National Computer Conference (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCG.2018.8593020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

第三届开源阿拉伯语料库和处理工具研讨会介绍ArabicWeb16数据挑战赛。挑战是关于ArabicWeb16数据集的实验,这是公开可用的最大的阿拉伯语Web数据集,大约有150M个阿拉伯语Web页面。在本文中,我们探索ArabicWeb16数据集,并使用它来构建用于命名实体识别(NER)任务的词嵌入模型。词嵌入模型对于构建包括NER在内的许多自然语言处理(NLP)任务具有强大的功能。我们尝试了两种词嵌入模型:Google Word2Vec模型和Stanford GloVe模型。这两个模型用于识别每个命名实体类型的相似单词。ArabicWeb16数据集在某种程度上难以预处理,然而,最终结果显示出有希望的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Named Entity Recognition Using Word-Embedding Techniques for ArabicWeb16: An Empirical Study
The 3rd Workshop on Open-Source Arabic Corpora and Processing Tools introduces ArabicWeb16 Data Challenge track. The challenge is about experimenting with ArabicWeb16 dataset, the largest Arabic Web dataset publicly available with about 150M Arabic Web pages. In this paper, we explore the ArabicWeb16 dataset and experiment with it to build word-embedding models for Named Entity Recognition (NER) task. Word-embedding models are powerful for building many Natural Language Processing (NLP) tasks including NER. We tried two word-embedding models: Google Word2Vec model and Stanford GloVe model. The two models were used to recognize similar words for each named entity type. The ArabicWeb16 dataset was somehow hard to pre-process, however, the final results showed promising outputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信