非标准模糊子集下的决策问题

R. Yager
{"title":"非标准模糊子集下的决策问题","authors":"R. Yager","doi":"10.1504/IJKESDP.2009.021980","DOIUrl":null,"url":null,"abstract":"We describe the formal equivalence between interval valued and intuitionistic fuzzy subsets. We then discuss the role of fuzzy set methods in multi-criteria decision-making. We note that when an application involves non-standard, interval valued or intuitionistic fuzzy subsets, a problem arises in choosing a best alternative. This problem is a result of the fact that the membership grades of these non-standard fuzzy subsets are not completely ordered. Here, we introduce a method for evaluating alternatives in this situation.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On decision-making with non-standard fuzzy subsets\",\"authors\":\"R. Yager\",\"doi\":\"10.1504/IJKESDP.2009.021980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the formal equivalence between interval valued and intuitionistic fuzzy subsets. We then discuss the role of fuzzy set methods in multi-criteria decision-making. We note that when an application involves non-standard, interval valued or intuitionistic fuzzy subsets, a problem arises in choosing a best alternative. This problem is a result of the fact that the membership grades of these non-standard fuzzy subsets are not completely ordered. Here, we introduce a method for evaluating alternatives in this situation.\",\"PeriodicalId\":347123,\"journal\":{\"name\":\"Int. J. Knowl. Eng. Soft Data Paradigms\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Eng. Soft Data Paradigms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJKESDP.2009.021980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKESDP.2009.021980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们描述了区间值与直觉模糊子集之间的形式等价。然后讨论了模糊集方法在多准则决策中的作用。我们注意到,当一个应用涉及非标准、区间值或直觉模糊子集时,在选择最佳替代方案时就会出现问题。这个问题是由于这些非标准模糊子集的隶属度等级不是完全有序的。在这里,我们介绍一种在这种情况下评估备选方案的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On decision-making with non-standard fuzzy subsets
We describe the formal equivalence between interval valued and intuitionistic fuzzy subsets. We then discuss the role of fuzzy set methods in multi-criteria decision-making. We note that when an application involves non-standard, interval valued or intuitionistic fuzzy subsets, a problem arises in choosing a best alternative. This problem is a result of the fact that the membership grades of these non-standard fuzzy subsets are not completely ordered. Here, we introduce a method for evaluating alternatives in this situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信