从跟踪中学习用户配置文件

U. Galassi, A. Giordana, Dino Mendola
{"title":"从跟踪中学习用户配置文件","authors":"U. Galassi, A. Giordana, Dino Mendola","doi":"10.1109/SAINTW.2005.78","DOIUrl":null,"url":null,"abstract":"This paper presents a method for automatically constructing a sophisticated user/process profile from traces of user/process behavior. User profile is encoded by means of a Hierarchical Hidden Markov Model (HHMM). The proposed method is based is on a recent algorithm, which is able to synthesize the HHMM structurefrom a set of logs of the user activity. The algorithm follows a bottom-up strategy, in which elementary facts in the sequences (motives) are progressively grouped, thus building the abstraction hierarchy of a HHMM, layer after layer. The method is firstly evaluated on artificial data. Thena user identification task, from real traces, is considered. A preliminary experimentation with several different users produced encouraging results.","PeriodicalId":220913,"journal":{"name":"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Learning User Profile from Traces\",\"authors\":\"U. Galassi, A. Giordana, Dino Mendola\",\"doi\":\"10.1109/SAINTW.2005.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for automatically constructing a sophisticated user/process profile from traces of user/process behavior. User profile is encoded by means of a Hierarchical Hidden Markov Model (HHMM). The proposed method is based is on a recent algorithm, which is able to synthesize the HHMM structurefrom a set of logs of the user activity. The algorithm follows a bottom-up strategy, in which elementary facts in the sequences (motives) are progressively grouped, thus building the abstraction hierarchy of a HHMM, layer after layer. The method is firstly evaluated on artificial data. Thena user identification task, from real traces, is considered. A preliminary experimentation with several different users produced encouraging results.\",\"PeriodicalId\":220913,\"journal\":{\"name\":\"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAINTW.2005.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAINTW.2005.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种根据用户/过程行为轨迹自动构建复杂用户/过程概要文件的方法。使用层次隐马尔可夫模型(HHMM)对用户配置文件进行编码。该方法基于一种新的算法,该算法能够从一组用户活动日志中合成HHMM结构。该算法采用自下而上的策略,将序列中的基本事实(动机)逐步分组,从而一层又一层地构建HHMM的抽象层次结构。首先用人工数据对该方法进行了评价。然后考虑从真实痕迹中识别用户的任务。对几个不同用户的初步实验产生了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning User Profile from Traces
This paper presents a method for automatically constructing a sophisticated user/process profile from traces of user/process behavior. User profile is encoded by means of a Hierarchical Hidden Markov Model (HHMM). The proposed method is based is on a recent algorithm, which is able to synthesize the HHMM structurefrom a set of logs of the user activity. The algorithm follows a bottom-up strategy, in which elementary facts in the sequences (motives) are progressively grouped, thus building the abstraction hierarchy of a HHMM, layer after layer. The method is firstly evaluated on artificial data. Thena user identification task, from real traces, is considered. A preliminary experimentation with several different users produced encouraging results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信