用快速离散曲波变换去除图像中的泊松噪声

Sandeep Palakkal, K. Prabhu
{"title":"用快速离散曲波变换去除图像中的泊松噪声","authors":"Sandeep Palakkal, K. Prabhu","doi":"10.1109/NCC.2011.5734771","DOIUrl":null,"url":null,"abstract":"We propose a strategy to combine the variance stabilizing transform (VST), used for Poisson image denoising, with the fast discrete Curvelet transform (FDCT). The VST transforms the Poisson image to approximately Gaussian distributed, and the subsequent denoising can be performed in the Gaussian domain. However, the performance of the VST degrades when the original image intensity is very low. On the other hand, the FDCT can sparsely represent the intrinsic features of images having discontinuities along smooth curves. Therefore, it is suitable for denoising applications. Combining the VST with the FDCT leads to good Poisson image denoising algorithms, even for low intensity images. We present a simple approach to achieve this and demonstrate some simulation results. The results show that the VST combined with the FDCT is a promising candidate for Poisson denoising.","PeriodicalId":158295,"journal":{"name":"2011 National Conference on Communications (NCC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Poisson noise removal from images using the fast discrete Curvelet transform\",\"authors\":\"Sandeep Palakkal, K. Prabhu\",\"doi\":\"10.1109/NCC.2011.5734771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a strategy to combine the variance stabilizing transform (VST), used for Poisson image denoising, with the fast discrete Curvelet transform (FDCT). The VST transforms the Poisson image to approximately Gaussian distributed, and the subsequent denoising can be performed in the Gaussian domain. However, the performance of the VST degrades when the original image intensity is very low. On the other hand, the FDCT can sparsely represent the intrinsic features of images having discontinuities along smooth curves. Therefore, it is suitable for denoising applications. Combining the VST with the FDCT leads to good Poisson image denoising algorithms, even for low intensity images. We present a simple approach to achieve this and demonstrate some simulation results. The results show that the VST combined with the FDCT is a promising candidate for Poisson denoising.\",\"PeriodicalId\":158295,\"journal\":{\"name\":\"2011 National Conference on Communications (NCC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2011.5734771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2011.5734771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种将方差稳定变换(VST)与快速离散曲线变换(FDCT)相结合的泊松图像去噪策略。VST将泊松图像变换为近似高斯分布,随后的去噪可以在高斯域进行。然而,当原始图像强度很低时,VST的性能会下降。另一方面,FDCT可以稀疏地表示沿光滑曲线具有不连续的图像的固有特征。因此,它适用于去噪应用。将VST与FDCT相结合,即使对于低强度图像,也可以得到良好的泊松图像去噪算法。我们提出了一种简单的方法来实现这一点,并演示了一些仿真结果。结果表明,VST与FDCT相结合是泊松去噪的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poisson noise removal from images using the fast discrete Curvelet transform
We propose a strategy to combine the variance stabilizing transform (VST), used for Poisson image denoising, with the fast discrete Curvelet transform (FDCT). The VST transforms the Poisson image to approximately Gaussian distributed, and the subsequent denoising can be performed in the Gaussian domain. However, the performance of the VST degrades when the original image intensity is very low. On the other hand, the FDCT can sparsely represent the intrinsic features of images having discontinuities along smooth curves. Therefore, it is suitable for denoising applications. Combining the VST with the FDCT leads to good Poisson image denoising algorithms, even for low intensity images. We present a simple approach to achieve this and demonstrate some simulation results. The results show that the VST combined with the FDCT is a promising candidate for Poisson denoising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信