{"title":"用快速离散曲波变换去除图像中的泊松噪声","authors":"Sandeep Palakkal, K. Prabhu","doi":"10.1109/NCC.2011.5734771","DOIUrl":null,"url":null,"abstract":"We propose a strategy to combine the variance stabilizing transform (VST), used for Poisson image denoising, with the fast discrete Curvelet transform (FDCT). The VST transforms the Poisson image to approximately Gaussian distributed, and the subsequent denoising can be performed in the Gaussian domain. However, the performance of the VST degrades when the original image intensity is very low. On the other hand, the FDCT can sparsely represent the intrinsic features of images having discontinuities along smooth curves. Therefore, it is suitable for denoising applications. Combining the VST with the FDCT leads to good Poisson image denoising algorithms, even for low intensity images. We present a simple approach to achieve this and demonstrate some simulation results. The results show that the VST combined with the FDCT is a promising candidate for Poisson denoising.","PeriodicalId":158295,"journal":{"name":"2011 National Conference on Communications (NCC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Poisson noise removal from images using the fast discrete Curvelet transform\",\"authors\":\"Sandeep Palakkal, K. Prabhu\",\"doi\":\"10.1109/NCC.2011.5734771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a strategy to combine the variance stabilizing transform (VST), used for Poisson image denoising, with the fast discrete Curvelet transform (FDCT). The VST transforms the Poisson image to approximately Gaussian distributed, and the subsequent denoising can be performed in the Gaussian domain. However, the performance of the VST degrades when the original image intensity is very low. On the other hand, the FDCT can sparsely represent the intrinsic features of images having discontinuities along smooth curves. Therefore, it is suitable for denoising applications. Combining the VST with the FDCT leads to good Poisson image denoising algorithms, even for low intensity images. We present a simple approach to achieve this and demonstrate some simulation results. The results show that the VST combined with the FDCT is a promising candidate for Poisson denoising.\",\"PeriodicalId\":158295,\"journal\":{\"name\":\"2011 National Conference on Communications (NCC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2011.5734771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2011.5734771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poisson noise removal from images using the fast discrete Curvelet transform
We propose a strategy to combine the variance stabilizing transform (VST), used for Poisson image denoising, with the fast discrete Curvelet transform (FDCT). The VST transforms the Poisson image to approximately Gaussian distributed, and the subsequent denoising can be performed in the Gaussian domain. However, the performance of the VST degrades when the original image intensity is very low. On the other hand, the FDCT can sparsely represent the intrinsic features of images having discontinuities along smooth curves. Therefore, it is suitable for denoising applications. Combining the VST with the FDCT leads to good Poisson image denoising algorithms, even for low intensity images. We present a simple approach to achieve this and demonstrate some simulation results. The results show that the VST combined with the FDCT is a promising candidate for Poisson denoising.