入侵者检测采用无线传感器网络,具有智能移动机器人响应能力

Yuan Yuan Li, L. Parker
{"title":"入侵者检测采用无线传感器网络,具有智能移动机器人响应能力","authors":"Yuan Yuan Li, L. Parker","doi":"10.1109/SECON.2008.4494250","DOIUrl":null,"url":null,"abstract":"In this paper, we present an intruder detection system that uses a wireless sensor network and mobile robots. The sensor network uses an unsupervised fuzzy Adaptive Resonance Theory (ART) neural network to learn and detect intruders in a previously unknown environment. Upon the detection of an intruder, a mobile robot travels to the position where the intruder is detected to investigate. The wireless sensor network uses a hierarchical communication/learning structure, where the mobile robot is the root node of the tree. Our fuzzy ART network is based on Kulakov and Davcev's implementation [6]. We enhanced the fuzzy ART neural network to learn a time-series and detect time-related changes using a Markov model. The proposed architecture is tested on physical hardware. Our results show that our enhanced detection system has a higher accuracy than the basic, original, fuzzy ART system.","PeriodicalId":188817,"journal":{"name":"IEEE SoutheastCon 2008","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Intruder detection using a wireless sensor network with an intelligent mobile robot response\",\"authors\":\"Yuan Yuan Li, L. Parker\",\"doi\":\"10.1109/SECON.2008.4494250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an intruder detection system that uses a wireless sensor network and mobile robots. The sensor network uses an unsupervised fuzzy Adaptive Resonance Theory (ART) neural network to learn and detect intruders in a previously unknown environment. Upon the detection of an intruder, a mobile robot travels to the position where the intruder is detected to investigate. The wireless sensor network uses a hierarchical communication/learning structure, where the mobile robot is the root node of the tree. Our fuzzy ART network is based on Kulakov and Davcev's implementation [6]. We enhanced the fuzzy ART neural network to learn a time-series and detect time-related changes using a Markov model. The proposed architecture is tested on physical hardware. Our results show that our enhanced detection system has a higher accuracy than the basic, original, fuzzy ART system.\",\"PeriodicalId\":188817,\"journal\":{\"name\":\"IEEE SoutheastCon 2008\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE SoutheastCon 2008\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2008.4494250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE SoutheastCon 2008","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2008.4494250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

在本文中,我们提出了一个使用无线传感器网络和移动机器人的入侵检测系统。传感器网络使用无监督模糊自适应共振理论(ART)神经网络来学习和检测未知环境中的入侵者。在检测到入侵者后,移动机器人移动到检测到入侵者的位置进行调查。无线传感器网络采用分层通信/学习结构,其中移动机器人是树的根节点。我们的模糊ART网络是基于Kulakov和Davcev的实现[6]。我们增强了模糊ART神经网络来学习时间序列,并使用马尔可夫模型检测时间相关的变化。提出的体系结构在物理硬件上进行了测试。结果表明,改进后的检测系统比基本的、原始的模糊ART系统具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intruder detection using a wireless sensor network with an intelligent mobile robot response
In this paper, we present an intruder detection system that uses a wireless sensor network and mobile robots. The sensor network uses an unsupervised fuzzy Adaptive Resonance Theory (ART) neural network to learn and detect intruders in a previously unknown environment. Upon the detection of an intruder, a mobile robot travels to the position where the intruder is detected to investigate. The wireless sensor network uses a hierarchical communication/learning structure, where the mobile robot is the root node of the tree. Our fuzzy ART network is based on Kulakov and Davcev's implementation [6]. We enhanced the fuzzy ART neural network to learn a time-series and detect time-related changes using a Markov model. The proposed architecture is tested on physical hardware. Our results show that our enhanced detection system has a higher accuracy than the basic, original, fuzzy ART system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信