多模态学习分析:连接学习理论和复杂学习行为的工具

M. Worsley
{"title":"多模态学习分析:连接学习理论和复杂学习行为的工具","authors":"M. Worsley","doi":"10.1145/2666633.2666634","DOIUrl":null,"url":null,"abstract":"The recent emergence of several low-cost, high resolution, multimodal sensors has greatly facilitated the ability for researchers to capture a wealth of data across a variety of contexts. Over the past few years, this multimodal technology has begun to receive greater attention within the learning community. Specifically, the Multimodal Learning Analytics community has been capitalizing on new sensor technology, as well as the expansion of tools for supporting computational analysis, in order to better understand and improve student learning in complex learning environments. However, even as the data collection and analysis tools have greatly eased the process, there remain a number of considerations and challenges in framing research in such a way that it lends to the development of learning theory. Moreover, there are a multitude of approaches that can be used for integrating multimodal data, and each approach has different assumptions and implications. In this paper, I describe three different types of multimodal analyses, and discuss how decisions about data integration and fusion have a significant impact on how the research relates to learning theories.","PeriodicalId":123577,"journal":{"name":"Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand Challenge","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Multimodal Learning Analytics as a Tool for Bridging Learning Theory and Complex Learning Behaviors\",\"authors\":\"M. Worsley\",\"doi\":\"10.1145/2666633.2666634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent emergence of several low-cost, high resolution, multimodal sensors has greatly facilitated the ability for researchers to capture a wealth of data across a variety of contexts. Over the past few years, this multimodal technology has begun to receive greater attention within the learning community. Specifically, the Multimodal Learning Analytics community has been capitalizing on new sensor technology, as well as the expansion of tools for supporting computational analysis, in order to better understand and improve student learning in complex learning environments. However, even as the data collection and analysis tools have greatly eased the process, there remain a number of considerations and challenges in framing research in such a way that it lends to the development of learning theory. Moreover, there are a multitude of approaches that can be used for integrating multimodal data, and each approach has different assumptions and implications. In this paper, I describe three different types of multimodal analyses, and discuss how decisions about data integration and fusion have a significant impact on how the research relates to learning theories.\",\"PeriodicalId\":123577,\"journal\":{\"name\":\"Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand Challenge\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666633.2666634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics Workshop and Grand Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666633.2666634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

最近出现的几种低成本、高分辨率、多模态传感器极大地促进了研究人员在各种情况下捕获丰富数据的能力。在过去的几年中,这种多模式技术已经开始在学习社区中受到更多的关注。具体来说,Multimodal Learning Analytics社区一直在利用新的传感器技术,以及支持计算分析的工具的扩展,以便更好地理解和改善学生在复杂学习环境中的学习。然而,即使数据收集和分析工具大大简化了这一过程,在构建研究框架以促进学习理论发展的过程中,仍然存在许多考虑和挑战。此外,有许多方法可用于集成多模态数据,每种方法都有不同的假设和含义。在本文中,我描述了三种不同类型的多模态分析,并讨论了关于数据集成和融合的决策如何对研究与学习理论的关系产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Learning Analytics as a Tool for Bridging Learning Theory and Complex Learning Behaviors
The recent emergence of several low-cost, high resolution, multimodal sensors has greatly facilitated the ability for researchers to capture a wealth of data across a variety of contexts. Over the past few years, this multimodal technology has begun to receive greater attention within the learning community. Specifically, the Multimodal Learning Analytics community has been capitalizing on new sensor technology, as well as the expansion of tools for supporting computational analysis, in order to better understand and improve student learning in complex learning environments. However, even as the data collection and analysis tools have greatly eased the process, there remain a number of considerations and challenges in framing research in such a way that it lends to the development of learning theory. Moreover, there are a multitude of approaches that can be used for integrating multimodal data, and each approach has different assumptions and implications. In this paper, I describe three different types of multimodal analyses, and discuss how decisions about data integration and fusion have a significant impact on how the research relates to learning theories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信