一种改进的全局k-means聚类算法

Lu Wang, Xiaoyun Zhang, Huidong Wang, Chuanzheng Bai
{"title":"一种改进的全局k-means聚类算法","authors":"Lu Wang, Xiaoyun Zhang, Huidong Wang, Chuanzheng Bai","doi":"10.1109/ICICIP53388.2021.9642224","DOIUrl":null,"url":null,"abstract":"K-means(KM) clustering algorithm is well known for its simplicity and efficiency. However, the clustering effect is greatly influenced by the selection of initial centers. To solve this problem, one of the improved algorithms is global k-means (GKM) which performs the clustering process in an incremental manner. This incremental manner makes GKM get rid of the influence of initial points selection and reach the global optimum or near global optimum results. However, GKM requires high computational cost. Therefore, an improved global k-means (IGKM) algorithm is proposed using a new guarantee reduction to reduce the computational load of GKM. Centroid theorem is introduced to reduce the computational time further. Simulation results on 14 datasets demonstrate that our IGKM algorithm can obtain better clustering results and requires less running time.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved global k-means clustering algorithm\",\"authors\":\"Lu Wang, Xiaoyun Zhang, Huidong Wang, Chuanzheng Bai\",\"doi\":\"10.1109/ICICIP53388.2021.9642224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K-means(KM) clustering algorithm is well known for its simplicity and efficiency. However, the clustering effect is greatly influenced by the selection of initial centers. To solve this problem, one of the improved algorithms is global k-means (GKM) which performs the clustering process in an incremental manner. This incremental manner makes GKM get rid of the influence of initial points selection and reach the global optimum or near global optimum results. However, GKM requires high computational cost. Therefore, an improved global k-means (IGKM) algorithm is proposed using a new guarantee reduction to reduce the computational load of GKM. Centroid theorem is introduced to reduce the computational time further. Simulation results on 14 datasets demonstrate that our IGKM algorithm can obtain better clustering results and requires less running time.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

K-means(KM)聚类算法以其简单、高效而著称。然而,初始中心的选择对聚类效果有很大影响。为了解决这一问题,一种改进的算法是全局k-均值(GKM)算法,它以增量的方式执行聚类过程。这种增量方式使GKM摆脱了初始点选择的影响,达到全局最优或接近全局最优结果。然而,GKM需要很高的计算成本。为此,提出了一种改进的全局k-均值(IGKM)算法,采用新的保证约简来降低全局k-均值算法的计算量。引入质心定理,进一步缩短了计算时间。在14个数据集上的仿真结果表明,IGKM算法可以获得较好的聚类结果,并且需要较少的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved global k-means clustering algorithm
K-means(KM) clustering algorithm is well known for its simplicity and efficiency. However, the clustering effect is greatly influenced by the selection of initial centers. To solve this problem, one of the improved algorithms is global k-means (GKM) which performs the clustering process in an incremental manner. This incremental manner makes GKM get rid of the influence of initial points selection and reach the global optimum or near global optimum results. However, GKM requires high computational cost. Therefore, an improved global k-means (IGKM) algorithm is proposed using a new guarantee reduction to reduce the computational load of GKM. Centroid theorem is introduced to reduce the computational time further. Simulation results on 14 datasets demonstrate that our IGKM algorithm can obtain better clustering results and requires less running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信