边学边匹配

Ramesh Johari, Vijay Kamble, Yashodhan Kanoria
{"title":"边学边匹配","authors":"Ramesh Johari, Vijay Kamble, Yashodhan Kanoria","doi":"10.1145/3033274.3084095","DOIUrl":null,"url":null,"abstract":"We consider the problem faced by a service platform that needs to match supply with demand but also to learn attributes of new arrivals in order to match them better in the future. We introduce a benchmark model with heterogeneous workers and jobs that arrive over time. Job types are known to the platform, but worker types are unknown and must be learned by observing match outcomes. Workers depart after performing a certain number of jobs. The payoff from a match depends on the pair of types and the goal is to maximize the steady-state rate of accumulation of payoff. Our main contribution is a complete characterization of the structure of the optimal policy in the limit that each worker performs many jobs. The platform faces a trade-off for each worker between myopically maximizing payoffs (exploitation) and learning the type of the worker (exploration). This creates a multitude of multi-armed bandit problems, one for each worker, coupled together by the constraint on the availability of jobs of different types (capacity constraints). We find that the platform should estimate a shadow price for each job type, and use the payoffs adjusted by these prices, first, to determine its learning goals and then, for each worker, (i) to balance learning with payoffs during the exploration phase, and (ii) to myopically match after it has achieved its learning goals during the exploitation phase.","PeriodicalId":287551,"journal":{"name":"Proceedings of the 2017 ACM Conference on Economics and Computation","volume":"24 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Matching while Learning\",\"authors\":\"Ramesh Johari, Vijay Kamble, Yashodhan Kanoria\",\"doi\":\"10.1145/3033274.3084095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem faced by a service platform that needs to match supply with demand but also to learn attributes of new arrivals in order to match them better in the future. We introduce a benchmark model with heterogeneous workers and jobs that arrive over time. Job types are known to the platform, but worker types are unknown and must be learned by observing match outcomes. Workers depart after performing a certain number of jobs. The payoff from a match depends on the pair of types and the goal is to maximize the steady-state rate of accumulation of payoff. Our main contribution is a complete characterization of the structure of the optimal policy in the limit that each worker performs many jobs. The platform faces a trade-off for each worker between myopically maximizing payoffs (exploitation) and learning the type of the worker (exploration). This creates a multitude of multi-armed bandit problems, one for each worker, coupled together by the constraint on the availability of jobs of different types (capacity constraints). We find that the platform should estimate a shadow price for each job type, and use the payoffs adjusted by these prices, first, to determine its learning goals and then, for each worker, (i) to balance learning with payoffs during the exploration phase, and (ii) to myopically match after it has achieved its learning goals during the exploitation phase.\",\"PeriodicalId\":287551,\"journal\":{\"name\":\"Proceedings of the 2017 ACM Conference on Economics and Computation\",\"volume\":\"24 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM Conference on Economics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3033274.3084095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3033274.3084095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

我们考虑了一个服务平台所面临的问题,既要做到供需匹配,又要了解新来者的属性,以便在未来更好地匹配他们。我们引入一个基准模型,其中包含随时间到达的异构工人和工作。工作类型是平台已知的,但工人类型是未知的,必须通过观察匹配结果来学习。工人在完成一定数量的工作后离开。配对的收益取决于配对类型,目标是最大化稳态收益积累率。我们的主要贡献是在每个工人执行许多工作的限制下,对最优政策的结构进行了完整的表征。对于每个工人来说,平台面临着一种权衡,即短视的最大化回报(剥削)和了解工人的类型(探索)。这就造成了大量的多臂强盗问题,每个工人一个,由于对不同类型工作的可用性的限制(能力限制)而耦合在一起。我们发现,平台应该估计每种工作类型的影子价格,并使用这些价格调整的收益,首先确定其学习目标,然后,对于每个工人,(i)在探索阶段平衡学习与收益,(ii)在开发阶段实现学习目标后进行短视匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matching while Learning
We consider the problem faced by a service platform that needs to match supply with demand but also to learn attributes of new arrivals in order to match them better in the future. We introduce a benchmark model with heterogeneous workers and jobs that arrive over time. Job types are known to the platform, but worker types are unknown and must be learned by observing match outcomes. Workers depart after performing a certain number of jobs. The payoff from a match depends on the pair of types and the goal is to maximize the steady-state rate of accumulation of payoff. Our main contribution is a complete characterization of the structure of the optimal policy in the limit that each worker performs many jobs. The platform faces a trade-off for each worker between myopically maximizing payoffs (exploitation) and learning the type of the worker (exploration). This creates a multitude of multi-armed bandit problems, one for each worker, coupled together by the constraint on the availability of jobs of different types (capacity constraints). We find that the platform should estimate a shadow price for each job type, and use the payoffs adjusted by these prices, first, to determine its learning goals and then, for each worker, (i) to balance learning with payoffs during the exploration phase, and (ii) to myopically match after it has achieved its learning goals during the exploitation phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信