离散自治系统的定时稳定性

Junsoo Lee, W. Haddad
{"title":"离散自治系统的定时稳定性","authors":"Junsoo Lee, W. Haddad","doi":"10.1109/MED54222.2022.9837152","DOIUrl":null,"url":null,"abstract":"Unlike finite time stability, wherein the upper bound of the settling-time function capturing the finite settling time behavior of the dynamical system depends on the system initial conditions, fixed time stability involves finite time stable systems for which the minimum bound of the settling-time function is guaranteed to be independent of the system initial conditions and can a priori be adjusted. In this paper, we develop several fixed time stability results for discrete autonomous systems including a fixed-time Lyapunov theorem that involves a Lyapunov difference that satisfies an exponential inequality of the Lyapunov function giving rise to a minimum bound on the settling-time function characterized by the principal and secondary branches of the Lambert W function.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fixed Time Stability of Discrete Autonomous Systems\",\"authors\":\"Junsoo Lee, W. Haddad\",\"doi\":\"10.1109/MED54222.2022.9837152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike finite time stability, wherein the upper bound of the settling-time function capturing the finite settling time behavior of the dynamical system depends on the system initial conditions, fixed time stability involves finite time stable systems for which the minimum bound of the settling-time function is guaranteed to be independent of the system initial conditions and can a priori be adjusted. In this paper, we develop several fixed time stability results for discrete autonomous systems including a fixed-time Lyapunov theorem that involves a Lyapunov difference that satisfies an exponential inequality of the Lyapunov function giving rise to a minimum bound on the settling-time function characterized by the principal and secondary branches of the Lambert W function.\",\"PeriodicalId\":354557,\"journal\":{\"name\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED54222.2022.9837152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

有限时间稳定性与有限时间稳定性不同,有限时间稳定性中,沉降时间函数的上界取决于系统的初始条件,而固定时间稳定性涉及有限时间稳定系统,其沉降时间函数的最小界保证与系统初始条件无关,并且可以先验地进行调整。本文给出了离散自治系统的几个固定时间稳定性结果,其中包括一个固定时间Lyapunov定理,该定理涉及Lyapunov差分,该差分满足Lyapunov函数的一个指数不等式,从而得到了由Lambert W函数的主分支和次分支表征的稳定时间函数的最小界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed Time Stability of Discrete Autonomous Systems
Unlike finite time stability, wherein the upper bound of the settling-time function capturing the finite settling time behavior of the dynamical system depends on the system initial conditions, fixed time stability involves finite time stable systems for which the minimum bound of the settling-time function is guaranteed to be independent of the system initial conditions and can a priori be adjusted. In this paper, we develop several fixed time stability results for discrete autonomous systems including a fixed-time Lyapunov theorem that involves a Lyapunov difference that satisfies an exponential inequality of the Lyapunov function giving rise to a minimum bound on the settling-time function characterized by the principal and secondary branches of the Lambert W function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信