Sajib Chakraborty, Dai-Duong Tran, J. Van Mierlo, O. Hegazy
{"title":"基于wbg的电动汽车传动系统交错DC/DC降压变换器的广义小信号平均开关模型分析","authors":"Sajib Chakraborty, Dai-Duong Tran, J. Van Mierlo, O. Hegazy","doi":"10.23919/EPE20ECCEEurope43536.2020.9215601","DOIUrl":null,"url":null,"abstract":"To achieve a high-performance index and accurate controllability of power electronics converters (PEC), generalized small-signal analysis of the closed-loop power electronics converters is a key aspect. This article presents a detailed generalized small-signal averaged switch model (GSSASM) of a Wide Bandgap (WBG)-based Interleaved DC/DC Buck converter (IBC) for electric vehicle (EV) drivetrains to better understand the circuit characteristics, performance, stability and control systems. The derived GSSASM considers the power electronics device (e.g., switch & diode) and passive components (inductor, capacitor and internal resistance of input source), which can result in an accurate mathematical model representing the real-time (RT) system. The proposed model can be utilized for any number of phases in the IBC systems. Furthermore, a field-programmable gate array-based (FPGA) programming board of dSPACE MicroLabBox, is used to validate the proper control compensators towards high dynamic performance in the Real-Time Workshop (RTW)-system. Finally, the performance of the proposed mathematical model is verified with a 30-kW SiC-based IBC prototype in both transient and steady-state conditions, respectively.","PeriodicalId":241752,"journal":{"name":"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalized Small-Signal Averaged Switch Model Analysis of a WBG-based Interleaved DC/DC Buck Converter for Electric Vehicle Drivetrains\",\"authors\":\"Sajib Chakraborty, Dai-Duong Tran, J. Van Mierlo, O. Hegazy\",\"doi\":\"10.23919/EPE20ECCEEurope43536.2020.9215601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve a high-performance index and accurate controllability of power electronics converters (PEC), generalized small-signal analysis of the closed-loop power electronics converters is a key aspect. This article presents a detailed generalized small-signal averaged switch model (GSSASM) of a Wide Bandgap (WBG)-based Interleaved DC/DC Buck converter (IBC) for electric vehicle (EV) drivetrains to better understand the circuit characteristics, performance, stability and control systems. The derived GSSASM considers the power electronics device (e.g., switch & diode) and passive components (inductor, capacitor and internal resistance of input source), which can result in an accurate mathematical model representing the real-time (RT) system. The proposed model can be utilized for any number of phases in the IBC systems. Furthermore, a field-programmable gate array-based (FPGA) programming board of dSPACE MicroLabBox, is used to validate the proper control compensators towards high dynamic performance in the Real-Time Workshop (RTW)-system. Finally, the performance of the proposed mathematical model is verified with a 30-kW SiC-based IBC prototype in both transient and steady-state conditions, respectively.\",\"PeriodicalId\":241752,\"journal\":{\"name\":\"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EPE20ECCEEurope43536.2020.9215601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EPE20ECCEEurope43536.2020.9215601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalized Small-Signal Averaged Switch Model Analysis of a WBG-based Interleaved DC/DC Buck Converter for Electric Vehicle Drivetrains
To achieve a high-performance index and accurate controllability of power electronics converters (PEC), generalized small-signal analysis of the closed-loop power electronics converters is a key aspect. This article presents a detailed generalized small-signal averaged switch model (GSSASM) of a Wide Bandgap (WBG)-based Interleaved DC/DC Buck converter (IBC) for electric vehicle (EV) drivetrains to better understand the circuit characteristics, performance, stability and control systems. The derived GSSASM considers the power electronics device (e.g., switch & diode) and passive components (inductor, capacitor and internal resistance of input source), which can result in an accurate mathematical model representing the real-time (RT) system. The proposed model can be utilized for any number of phases in the IBC systems. Furthermore, a field-programmable gate array-based (FPGA) programming board of dSPACE MicroLabBox, is used to validate the proper control compensators towards high dynamic performance in the Real-Time Workshop (RTW)-system. Finally, the performance of the proposed mathematical model is verified with a 30-kW SiC-based IBC prototype in both transient and steady-state conditions, respectively.