Yang Liu, Hung-Wei Tseng, Mark Gahagan, Jing Li, Yanqin Jin, S. Swanson
{"title":"鹰头马身有翼兽:在异构计算系统中有效地移动数据","authors":"Yang Liu, Hung-Wei Tseng, Mark Gahagan, Jing Li, Yanqin Jin, S. Swanson","doi":"10.1109/ICCD.2016.7753307","DOIUrl":null,"url":null,"abstract":"Data movement between the compute and the storage (e.g., GPU and SSD) has been a long-neglected problem in heterogeneous systems, while the inefficiency in existing systems does cause significant loss in both performance and energy efficiency. This paper presents Hippogriff to provide a high-level programming model to simplify data movement between the compute and the storage, and to dynamically schedule data transfers based on system load. By eliminating unnecessary data movement, Hippogriff can speedup single program workloads by 1.17×, and save 17% energy. For multi-program workloads, Hippogriff shows 1.25× speedup. Hippogriff also improves the performance of a GPU-based MapReduce framework by 27%.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hippogriff: Efficiently moving data in heterogeneous computing systems\",\"authors\":\"Yang Liu, Hung-Wei Tseng, Mark Gahagan, Jing Li, Yanqin Jin, S. Swanson\",\"doi\":\"10.1109/ICCD.2016.7753307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data movement between the compute and the storage (e.g., GPU and SSD) has been a long-neglected problem in heterogeneous systems, while the inefficiency in existing systems does cause significant loss in both performance and energy efficiency. This paper presents Hippogriff to provide a high-level programming model to simplify data movement between the compute and the storage, and to dynamically schedule data transfers based on system load. By eliminating unnecessary data movement, Hippogriff can speedup single program workloads by 1.17×, and save 17% energy. For multi-program workloads, Hippogriff shows 1.25× speedup. Hippogriff also improves the performance of a GPU-based MapReduce framework by 27%.\",\"PeriodicalId\":297899,\"journal\":{\"name\":\"2016 IEEE 34th International Conference on Computer Design (ICCD)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 34th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2016.7753307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hippogriff: Efficiently moving data in heterogeneous computing systems
Data movement between the compute and the storage (e.g., GPU and SSD) has been a long-neglected problem in heterogeneous systems, while the inefficiency in existing systems does cause significant loss in both performance and energy efficiency. This paper presents Hippogriff to provide a high-level programming model to simplify data movement between the compute and the storage, and to dynamically schedule data transfers based on system load. By eliminating unnecessary data movement, Hippogriff can speedup single program workloads by 1.17×, and save 17% energy. For multi-program workloads, Hippogriff shows 1.25× speedup. Hippogriff also improves the performance of a GPU-based MapReduce framework by 27%.