{"title":"复合合成孔径超声图像的频率选择","authors":"J. R. B. Taylor, J. J. M. Chan, G. Thomas","doi":"10.1109/IST.2012.6295514","DOIUrl":null,"url":null,"abstract":"In ultrasound imaging range resolution is proportional to the bandwidth of the transmitted pulse; however, noise also increases with frequency and forces a compromise in imaging accuracy. By compounding multiple synthetic aperture ultrasound images from different frequencies, both the resolution and signal-to-noise ratio (SNR) can be improved, unlike when averaging multiple scans at a single frequency, which would only increase SNR. This paper describes a technique for frequency compounding of synthetic aperture ultrasound images and a practical test setup is introduced for frequency selection for imaging systems consisting of a single piezoelectric transducer and a variable-frequency pulser. An example is provided in which point-scatterers in water are scanned along a linear path at frequencies of 16 to 21 MHz. The resulting multi-frequency imaging increases peak SNR by 13% more than single-frequency averaging with the same number of scans and reduces the range-domain support of the point-spread function by 30%.","PeriodicalId":213330,"journal":{"name":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Frequency selection for compounding synthetic aperture ultrasound images\",\"authors\":\"J. R. B. Taylor, J. J. M. Chan, G. Thomas\",\"doi\":\"10.1109/IST.2012.6295514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In ultrasound imaging range resolution is proportional to the bandwidth of the transmitted pulse; however, noise also increases with frequency and forces a compromise in imaging accuracy. By compounding multiple synthetic aperture ultrasound images from different frequencies, both the resolution and signal-to-noise ratio (SNR) can be improved, unlike when averaging multiple scans at a single frequency, which would only increase SNR. This paper describes a technique for frequency compounding of synthetic aperture ultrasound images and a practical test setup is introduced for frequency selection for imaging systems consisting of a single piezoelectric transducer and a variable-frequency pulser. An example is provided in which point-scatterers in water are scanned along a linear path at frequencies of 16 to 21 MHz. The resulting multi-frequency imaging increases peak SNR by 13% more than single-frequency averaging with the same number of scans and reduces the range-domain support of the point-spread function by 30%.\",\"PeriodicalId\":213330,\"journal\":{\"name\":\"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST.2012.6295514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2012.6295514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frequency selection for compounding synthetic aperture ultrasound images
In ultrasound imaging range resolution is proportional to the bandwidth of the transmitted pulse; however, noise also increases with frequency and forces a compromise in imaging accuracy. By compounding multiple synthetic aperture ultrasound images from different frequencies, both the resolution and signal-to-noise ratio (SNR) can be improved, unlike when averaging multiple scans at a single frequency, which would only increase SNR. This paper describes a technique for frequency compounding of synthetic aperture ultrasound images and a practical test setup is introduced for frequency selection for imaging systems consisting of a single piezoelectric transducer and a variable-frequency pulser. An example is provided in which point-scatterers in water are scanned along a linear path at frequencies of 16 to 21 MHz. The resulting multi-frequency imaging increases peak SNR by 13% more than single-frequency averaging with the same number of scans and reduces the range-domain support of the point-spread function by 30%.