不完全时间序列面板数据的可视化预测建模

Hanbyul Yeon, Mingyu Pi, Hyesook Son, Yun Jang
{"title":"不完全时间序列面板数据的可视化预测建模","authors":"Hanbyul Yeon, Mingyu Pi, Hyesook Son, Yun Jang","doi":"10.1145/3356422.3356439","DOIUrl":null,"url":null,"abstract":"It is not easy to predict incomplete panel data whose overall trend is not complete. For example, physical growth data for age 7-18 has been collected every a few months for up to seven years; therefore, only short growth pattern pieces exist in the data. When using previous prediction techniques, it is challenging to create a growth prediction model that reflects individual growth patterns. Also, uncertainties in predicted results emerge since the overall trend of the data is unknown. In this work, we present a predictive analysis and modeling to forecast incomplete data over time. We extend the Bayesian network model, which is relative data-driven approaches that explore similar data and weave them to create approximate inference margins. Besides, we propose a visual analytics system that enables us to design various predictive models that reflect individual growth pattern. Our visual analytics system assists us to discover new growth patterns in the process of analyzing the accuracy of previously designed predictive models. Moreover, the system allows us to optimize predictive models to fit unusual growth patterns.","PeriodicalId":197051,"journal":{"name":"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual predictive modeling of incomplete time series panel data\",\"authors\":\"Hanbyul Yeon, Mingyu Pi, Hyesook Son, Yun Jang\",\"doi\":\"10.1145/3356422.3356439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is not easy to predict incomplete panel data whose overall trend is not complete. For example, physical growth data for age 7-18 has been collected every a few months for up to seven years; therefore, only short growth pattern pieces exist in the data. When using previous prediction techniques, it is challenging to create a growth prediction model that reflects individual growth patterns. Also, uncertainties in predicted results emerge since the overall trend of the data is unknown. In this work, we present a predictive analysis and modeling to forecast incomplete data over time. We extend the Bayesian network model, which is relative data-driven approaches that explore similar data and weave them to create approximate inference margins. Besides, we propose a visual analytics system that enables us to design various predictive models that reflect individual growth pattern. Our visual analytics system assists us to discover new growth patterns in the process of analyzing the accuracy of previously designed predictive models. Moreover, the system allows us to optimize predictive models to fit unusual growth patterns.\",\"PeriodicalId\":197051,\"journal\":{\"name\":\"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3356422.3356439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3356422.3356439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

整体趋势不完整的面板数据不容易预测。例如,每隔几个月收集一次7-18岁儿童的身体发育数据,持续时间长达7年;因此,数据中只存在较短的增长模式片段。当使用以前的预测技术时,创建一个反映个人增长模式的增长预测模型是具有挑战性的。此外,由于数据的总体趋势未知,预测结果也存在不确定性。在这项工作中,我们提出了一个预测分析和建模来预测不完整的数据随时间的变化。我们扩展了贝叶斯网络模型,这是一种相对数据驱动的方法,它探索相似的数据并将它们编织起来以创建近似的推理边界。此外,我们提出了一个可视化的分析系统,使我们能够设计各种预测模型,反映个人的成长模式。我们的视觉分析系统帮助我们在分析先前设计的预测模型的准确性的过程中发现新的增长模式。此外,该系统使我们能够优化预测模型,以适应不寻常的增长模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual predictive modeling of incomplete time series panel data
It is not easy to predict incomplete panel data whose overall trend is not complete. For example, physical growth data for age 7-18 has been collected every a few months for up to seven years; therefore, only short growth pattern pieces exist in the data. When using previous prediction techniques, it is challenging to create a growth prediction model that reflects individual growth patterns. Also, uncertainties in predicted results emerge since the overall trend of the data is unknown. In this work, we present a predictive analysis and modeling to forecast incomplete data over time. We extend the Bayesian network model, which is relative data-driven approaches that explore similar data and weave them to create approximate inference margins. Besides, we propose a visual analytics system that enables us to design various predictive models that reflect individual growth pattern. Our visual analytics system assists us to discover new growth patterns in the process of analyzing the accuracy of previously designed predictive models. Moreover, the system allows us to optimize predictive models to fit unusual growth patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信