采用慢速法实现软判决Reed-Solomon解码的高效插值结构

Xinmiao Zhang, Jiangli Zhu
{"title":"采用慢速法实现软判决Reed-Solomon解码的高效插值结构","authors":"Xinmiao Zhang, Jiangli Zhu","doi":"10.1109/SIPS.2008.4671731","DOIUrl":null,"url":null,"abstract":"Among various decoding algorithms of Reed-Solomon (RS) codes, algebraic soft-decision decoding (ASD) can achieve significant coding gain with polynomial complexity. One major step of ASD is the interpolation. The interpolation problem can be solved by the Nielsonpsilas algorithm, which involves discrepancy coefficient computation. This computation requires a feedback loop with one multiplier, one adder and one register. The maximum clock frequency of the interpolation architecture is limited by the multiplier-adder path in this loop. In this paper, we propose to employ the slow-down technique to increase the register number in the feedback loop, such that the multiplier-adder path can be divided into shorter segments through retiming to achieve higher clock frequency. In addition, input sequences to the feedback loops are interleaved. Applying the proposed interpolation architecture to a (255, 239) RS code with maximum multiplicity three, 43% higher efficiency in terms of speed/area ratio can be achieved over prior efforts.","PeriodicalId":173371,"journal":{"name":"2008 IEEE Workshop on Signal Processing Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient interpolration architecture for soft-decision Reed-Solomon decoding by applying slow-down\",\"authors\":\"Xinmiao Zhang, Jiangli Zhu\",\"doi\":\"10.1109/SIPS.2008.4671731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among various decoding algorithms of Reed-Solomon (RS) codes, algebraic soft-decision decoding (ASD) can achieve significant coding gain with polynomial complexity. One major step of ASD is the interpolation. The interpolation problem can be solved by the Nielsonpsilas algorithm, which involves discrepancy coefficient computation. This computation requires a feedback loop with one multiplier, one adder and one register. The maximum clock frequency of the interpolation architecture is limited by the multiplier-adder path in this loop. In this paper, we propose to employ the slow-down technique to increase the register number in the feedback loop, such that the multiplier-adder path can be divided into shorter segments through retiming to achieve higher clock frequency. In addition, input sequences to the feedback loops are interleaved. Applying the proposed interpolation architecture to a (255, 239) RS code with maximum multiplicity three, 43% higher efficiency in terms of speed/area ratio can be achieved over prior efforts.\",\"PeriodicalId\":173371,\"journal\":{\"name\":\"2008 IEEE Workshop on Signal Processing Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.2008.4671731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2008.4671731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在Reed-Solomon (RS)码的各种译码算法中,代数软判决译码(ASD)能以多项式复杂度获得显著的编码增益。ASD的一个主要步骤是插值。插值问题可以通过尼尔森塞拉斯算法来解决,该算法涉及到差异系数的计算。这种计算需要一个带有一个乘法器、一个加法器和一个寄存器的反馈循环。内插结构的最大时钟频率受环路中乘法器-加法器路径的限制。在本文中,我们提出采用减速技术来增加反馈回路中的寄存器数,这样乘法器加法器路径可以通过重定时被分割成更短的段,从而获得更高的时钟频率。此外,反馈回路的输入序列是交错的。将所提出的插值结构应用于最大多重数为3的(255,239)RS代码,在速度/面积比方面可以比先前的努力提高43%的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient interpolration architecture for soft-decision Reed-Solomon decoding by applying slow-down
Among various decoding algorithms of Reed-Solomon (RS) codes, algebraic soft-decision decoding (ASD) can achieve significant coding gain with polynomial complexity. One major step of ASD is the interpolation. The interpolation problem can be solved by the Nielsonpsilas algorithm, which involves discrepancy coefficient computation. This computation requires a feedback loop with one multiplier, one adder and one register. The maximum clock frequency of the interpolation architecture is limited by the multiplier-adder path in this loop. In this paper, we propose to employ the slow-down technique to increase the register number in the feedback loop, such that the multiplier-adder path can be divided into shorter segments through retiming to achieve higher clock frequency. In addition, input sequences to the feedback loops are interleaved. Applying the proposed interpolation architecture to a (255, 239) RS code with maximum multiplicity three, 43% higher efficiency in terms of speed/area ratio can be achieved over prior efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信