彩色图像的超分辨率

Isabella Herold, S. Young
{"title":"彩色图像的超分辨率","authors":"Isabella Herold, S. Young","doi":"10.1109/AIPR.2017.8457964","DOIUrl":null,"url":null,"abstract":"Super-resolution image reconstruction (SRIR) can improve image resolution using a sequence of low-resolution images without upgrading the sensor's hardware. Here, we consider an efficient approach of super-resolving color images. The direct approach is to super-resolve 3 color bands of the input color image sequence separately; however, it requires performing the super-resolution computation 3 times. We transform images in the default red, green, blue (RGB) color space to another color space where SRIR can be used efficiently. Digital color images can be decomposed into 3 grayscale pictures, each representing a different color space coordinate. In common color spaces, one of the coordinates (i.e., grayscale pictures) contains luminance information while the other 2 contain chrominance information. We use only the luminance component in the US Army Research Laboratory's (ARL) SRIR algorithm and upsample the chrominance components based on ARL's alias-free image upsampling using Fourier-based windowing methods. A reverse transformation is performed on these 3 components/pictures to produce a super-resolved color image in the original RGB color space. Five color spaces (CIE 1976 (L*, a*, b*) color space [CIELAB], YIQ, YCbCr, hue-saturation-value [HSV], and hue-saturation-intensity [HSI]) are considered to test the merit of the proposed approach. The results of super-resolving real-world color images are provided.","PeriodicalId":128779,"journal":{"name":"2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Super-Resolution for Color Imagery\",\"authors\":\"Isabella Herold, S. Young\",\"doi\":\"10.1109/AIPR.2017.8457964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Super-resolution image reconstruction (SRIR) can improve image resolution using a sequence of low-resolution images without upgrading the sensor's hardware. Here, we consider an efficient approach of super-resolving color images. The direct approach is to super-resolve 3 color bands of the input color image sequence separately; however, it requires performing the super-resolution computation 3 times. We transform images in the default red, green, blue (RGB) color space to another color space where SRIR can be used efficiently. Digital color images can be decomposed into 3 grayscale pictures, each representing a different color space coordinate. In common color spaces, one of the coordinates (i.e., grayscale pictures) contains luminance information while the other 2 contain chrominance information. We use only the luminance component in the US Army Research Laboratory's (ARL) SRIR algorithm and upsample the chrominance components based on ARL's alias-free image upsampling using Fourier-based windowing methods. A reverse transformation is performed on these 3 components/pictures to produce a super-resolved color image in the original RGB color space. Five color spaces (CIE 1976 (L*, a*, b*) color space [CIELAB], YIQ, YCbCr, hue-saturation-value [HSV], and hue-saturation-intensity [HSI]) are considered to test the merit of the proposed approach. The results of super-resolving real-world color images are provided.\",\"PeriodicalId\":128779,\"journal\":{\"name\":\"2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2017.8457964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2017.8457964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

超分辨率图像重建(SRIR)可以在不升级传感器硬件的情况下,利用一系列低分辨率图像来提高图像分辨率。在这里,我们考虑了一种有效的超分辨彩色图像的方法。直接的方法是对输入彩色图像序列的3个色带分别进行超分辨;然而,它需要进行3次超分辨率计算。我们将默认的红、绿、蓝(RGB)颜色空间中的图像转换为另一个可以有效使用SRIR的颜色空间。数字彩色图像可以分解为3幅灰度图像,每幅图像代表一个不同的色彩空间坐标。在普通色彩空间中,其中一个坐标(即灰度图)包含亮度信息,而另外两个包含色度信息。我们仅使用美国陆军研究实验室(ARL) SRIR算法中的亮度分量,并使用基于傅里叶的加窗方法对基于ARL的无别名图像上采样的色度分量进行上采样。对这3个分量/图片进行反向变换,在原始RGB色彩空间中生成超分辨率彩色图像。采用五种颜色空间(CIE 1976 (L*, a*, b*)颜色空间[CIELAB], YIQ, YCbCr,色调-饱和度-值[HSV]和色调-饱和度-强度[HSI])来测试所提出方法的优点。给出了超分辨真实彩色图像的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super-Resolution for Color Imagery
Super-resolution image reconstruction (SRIR) can improve image resolution using a sequence of low-resolution images without upgrading the sensor's hardware. Here, we consider an efficient approach of super-resolving color images. The direct approach is to super-resolve 3 color bands of the input color image sequence separately; however, it requires performing the super-resolution computation 3 times. We transform images in the default red, green, blue (RGB) color space to another color space where SRIR can be used efficiently. Digital color images can be decomposed into 3 grayscale pictures, each representing a different color space coordinate. In common color spaces, one of the coordinates (i.e., grayscale pictures) contains luminance information while the other 2 contain chrominance information. We use only the luminance component in the US Army Research Laboratory's (ARL) SRIR algorithm and upsample the chrominance components based on ARL's alias-free image upsampling using Fourier-based windowing methods. A reverse transformation is performed on these 3 components/pictures to produce a super-resolved color image in the original RGB color space. Five color spaces (CIE 1976 (L*, a*, b*) color space [CIELAB], YIQ, YCbCr, hue-saturation-value [HSV], and hue-saturation-intensity [HSI]) are considered to test the merit of the proposed approach. The results of super-resolving real-world color images are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信