Wei-wei Zhan, Hai-yan Lu, Li Cai, Xiu Wang, Zhenyu Yang
{"title":"基于CPLD的石英水平摆倾斜仪CCD驱动设计","authors":"Wei-wei Zhan, Hai-yan Lu, Li Cai, Xiu Wang, Zhenyu Yang","doi":"10.1117/12.2083552","DOIUrl":null,"url":null,"abstract":"In order to improve the resolution and conversion speed of photoelectric transducer, a high sensitive and low dark current CCD image sensor TCD1711DG was used in SQ-70D digital quartz horizontal pendulum tiltmeter. The timing chart of CCD has fixed state transition and rigorous timing requirements at typical pulse frequency. Then, a method of controlling the pulse state transition was developed by synchronous counting. The driver was carried out by using Verilog HDL based on CPLD. Simulation and experimental results indicated that the driver designed by this method was simple and stable enough to meet the timing requirements of TCD1711DG. Furthermore, integration time of the CCD could be revised flexibly by setting controlled variable QINT which improved the adaptability of the tiltmeter to different lighting levels.","PeriodicalId":380636,"journal":{"name":"Precision Engineering Measurements and Instrumentation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of CCD driver for quartz horizontal pendulum tiltmeter based on CPLD\",\"authors\":\"Wei-wei Zhan, Hai-yan Lu, Li Cai, Xiu Wang, Zhenyu Yang\",\"doi\":\"10.1117/12.2083552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the resolution and conversion speed of photoelectric transducer, a high sensitive and low dark current CCD image sensor TCD1711DG was used in SQ-70D digital quartz horizontal pendulum tiltmeter. The timing chart of CCD has fixed state transition and rigorous timing requirements at typical pulse frequency. Then, a method of controlling the pulse state transition was developed by synchronous counting. The driver was carried out by using Verilog HDL based on CPLD. Simulation and experimental results indicated that the driver designed by this method was simple and stable enough to meet the timing requirements of TCD1711DG. Furthermore, integration time of the CCD could be revised flexibly by setting controlled variable QINT which improved the adaptability of the tiltmeter to different lighting levels.\",\"PeriodicalId\":380636,\"journal\":{\"name\":\"Precision Engineering Measurements and Instrumentation\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering Measurements and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2083552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering Measurements and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2083552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of CCD driver for quartz horizontal pendulum tiltmeter based on CPLD
In order to improve the resolution and conversion speed of photoelectric transducer, a high sensitive and low dark current CCD image sensor TCD1711DG was used in SQ-70D digital quartz horizontal pendulum tiltmeter. The timing chart of CCD has fixed state transition and rigorous timing requirements at typical pulse frequency. Then, a method of controlling the pulse state transition was developed by synchronous counting. The driver was carried out by using Verilog HDL based on CPLD. Simulation and experimental results indicated that the driver designed by this method was simple and stable enough to meet the timing requirements of TCD1711DG. Furthermore, integration time of the CCD could be revised flexibly by setting controlled variable QINT which improved the adaptability of the tiltmeter to different lighting levels.