利用混合量子算法求解VRPTW

T. Ning, Chengzhi Guo
{"title":"利用混合量子算法求解VRPTW","authors":"T. Ning, Chengzhi Guo","doi":"10.1109/ICICIP.2012.6391549","DOIUrl":null,"url":null,"abstract":"Proposed a novel optimal algorithm of hybrid quantum particle swarm optimization to solve VRPTW through combining QPSO with simulated annealing algorithm. The analysis of experimental data verified that the novel algorithm can improve the convergence reliability and speed within short time, and it is an effective solution for VRPTW.","PeriodicalId":376265,"journal":{"name":"2012 Third International Conference on Intelligent Control and Information Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using hybrid quantum algorithm to solve VRPTW\",\"authors\":\"T. Ning, Chengzhi Guo\",\"doi\":\"10.1109/ICICIP.2012.6391549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposed a novel optimal algorithm of hybrid quantum particle swarm optimization to solve VRPTW through combining QPSO with simulated annealing algorithm. The analysis of experimental data verified that the novel algorithm can improve the convergence reliability and speed within short time, and it is an effective solution for VRPTW.\",\"PeriodicalId\":376265,\"journal\":{\"name\":\"2012 Third International Conference on Intelligent Control and Information Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2012.6391549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2012.6391549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将量子粒子群优化算法与模拟退火算法相结合,提出了一种求解VRPTW的混合量子粒子群优化算法。实验数据分析验证了该算法能在短时间内提高收敛可靠性和收敛速度,是解决VRPTW问题的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using hybrid quantum algorithm to solve VRPTW
Proposed a novel optimal algorithm of hybrid quantum particle swarm optimization to solve VRPTW through combining QPSO with simulated annealing algorithm. The analysis of experimental data verified that the novel algorithm can improve the convergence reliability and speed within short time, and it is an effective solution for VRPTW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信