从纹理中分离几何图形以改进人脸分析

Albert Pujol, J. L. Alba, J. Villanueva
{"title":"从纹理中分离几何图形以改进人脸分析","authors":"Albert Pujol, J. L. Alba, J. Villanueva","doi":"10.1109/ICIP.2001.958583","DOIUrl":null,"url":null,"abstract":"This article studies the effect of preprocessing a classical PCA decomposition using a modified self organizing map (SOM) in order to find shape clusters to improve the texture analysis by means of a pool of PCAs. In most successful view-based recognition systems, shape and texture are jointly used to model statistically a linear or piece-wise linear subspace that optimally explains the face space for a specific database. Our work is aimed at separating the influence that variance in face shape stamps on the set of eigenfaces in the classical PCA decomposition. A set of experiments show the reliability of this new system.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Separating geometry from texture to improve face analysis\",\"authors\":\"Albert Pujol, J. L. Alba, J. Villanueva\",\"doi\":\"10.1109/ICIP.2001.958583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article studies the effect of preprocessing a classical PCA decomposition using a modified self organizing map (SOM) in order to find shape clusters to improve the texture analysis by means of a pool of PCAs. In most successful view-based recognition systems, shape and texture are jointly used to model statistically a linear or piece-wise linear subspace that optimally explains the face space for a specific database. Our work is aimed at separating the influence that variance in face shape stamps on the set of eigenfaces in the classical PCA decomposition. A set of experiments show the reliability of this new system.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.958583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.958583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了利用改进的自组织映射(SOM)对经典PCA分解进行预处理,以寻找形状聚类,从而利用PCA池改进纹理分析的效果。在大多数成功的基于视图的识别系统中,形状和纹理被联合用于统计线性或分段线性子空间的建模,以最佳地解释特定数据库的人脸空间。我们的工作旨在分离在经典的主成分分析(PCA)分解中,面部形状印记的方差对特征面集的影响。一组实验证明了该系统的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating geometry from texture to improve face analysis
This article studies the effect of preprocessing a classical PCA decomposition using a modified self organizing map (SOM) in order to find shape clusters to improve the texture analysis by means of a pool of PCAs. In most successful view-based recognition systems, shape and texture are jointly used to model statistically a linear or piece-wise linear subspace that optimally explains the face space for a specific database. Our work is aimed at separating the influence that variance in face shape stamps on the set of eigenfaces in the classical PCA decomposition. A set of experiments show the reliability of this new system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信