迈向多标准分析:一种新的聚类方法

Rouba Baroudi, Nait Bahloul Safia
{"title":"迈向多标准分析:一种新的聚类方法","authors":"Rouba Baroudi, Nait Bahloul Safia","doi":"10.1109/ICMWI.2010.5648063","DOIUrl":null,"url":null,"abstract":"The researches in the multicriteria classification fields focus on the assignment of objects into predefined classes. Nevertheless, the construction of multicriteria clusters is not enough studied in the field of research. To deal with this problem, we propose a new clustering approach based on the definition of a new distance which takes into account the multicriteria nature of the problem. This distance uses the preference relations of the Promethee method and the Sokal and Michener index so widely used in the classification field. The approach generates, according to the preference relations 4 clustering. Each clustering expresses a way of grouping objects according to a preference relation. To get the final optimal clustering, an aggregation procedure, based on the minimization of the disagreements between the four clustering, is used.","PeriodicalId":404577,"journal":{"name":"2010 International Conference on Machine and Web Intelligence","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Towards multicriteria analysis: A new clustering approach\",\"authors\":\"Rouba Baroudi, Nait Bahloul Safia\",\"doi\":\"10.1109/ICMWI.2010.5648063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The researches in the multicriteria classification fields focus on the assignment of objects into predefined classes. Nevertheless, the construction of multicriteria clusters is not enough studied in the field of research. To deal with this problem, we propose a new clustering approach based on the definition of a new distance which takes into account the multicriteria nature of the problem. This distance uses the preference relations of the Promethee method and the Sokal and Michener index so widely used in the classification field. The approach generates, according to the preference relations 4 clustering. Each clustering expresses a way of grouping objects according to a preference relation. To get the final optimal clustering, an aggregation procedure, based on the minimization of the disagreements between the four clustering, is used.\",\"PeriodicalId\":404577,\"journal\":{\"name\":\"2010 International Conference on Machine and Web Intelligence\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine and Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMWI.2010.5648063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine and Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMWI.2010.5648063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

多准则分类领域的研究主要集中在将对象划分为预定义的类。然而,多标准集群的构建在研究领域还不够深入。为了解决这一问题,我们提出了一种基于新距离定义的聚类方法,该方法考虑了问题的多准则性质。这个距离利用了普罗米修斯法和分类领域中广泛使用的索卡尔和米切纳指数的偏好关系。该方法根据偏好关系生成聚类。每个聚类都表达了一种根据偏好关系对对象进行分组的方式。为了得到最终的最优聚类,采用了一种基于四种聚类之间分歧最小化的聚类过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards multicriteria analysis: A new clustering approach
The researches in the multicriteria classification fields focus on the assignment of objects into predefined classes. Nevertheless, the construction of multicriteria clusters is not enough studied in the field of research. To deal with this problem, we propose a new clustering approach based on the definition of a new distance which takes into account the multicriteria nature of the problem. This distance uses the preference relations of the Promethee method and the Sokal and Michener index so widely used in the classification field. The approach generates, according to the preference relations 4 clustering. Each clustering expresses a way of grouping objects according to a preference relation. To get the final optimal clustering, an aggregation procedure, based on the minimization of the disagreements between the four clustering, is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信