面向老年人护理的实时睡意检测

B. Bačić, Jason Zhang
{"title":"面向老年人护理的实时睡意检测","authors":"B. Bačić, Jason Zhang","doi":"10.1109/CITISIA50690.2020.9371810","DOIUrl":null,"url":null,"abstract":"The primary focus of this paper is to produce a proof of concept for extracting drowsiness information from videos to help elderly living on their own. To quantify yawning, eyelid and head movement over time, we extracted 3000 images from captured videos for training and testing of deep learning models integrated with OpenCV library. The achieved classification accuracy for eyelid and mouth open/close status were between 94.3%-97.2%. Visual inspection of head movement from videos with generated 3D coordinate overlays, indicated clear spatiotemporal patterns in collected data (yaw, roll and pitch). Extraction methodology of the drowsiness information as timeseries is applicable to other contexts including support for prior work in privacy-preserving augmented coaching, sport rehabilitation, and integration with big data platform in healthcare.","PeriodicalId":145272,"journal":{"name":"2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)","volume":"2020 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Real-Time Drowsiness Detection for Elderly Care\",\"authors\":\"B. Bačić, Jason Zhang\",\"doi\":\"10.1109/CITISIA50690.2020.9371810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary focus of this paper is to produce a proof of concept for extracting drowsiness information from videos to help elderly living on their own. To quantify yawning, eyelid and head movement over time, we extracted 3000 images from captured videos for training and testing of deep learning models integrated with OpenCV library. The achieved classification accuracy for eyelid and mouth open/close status were between 94.3%-97.2%. Visual inspection of head movement from videos with generated 3D coordinate overlays, indicated clear spatiotemporal patterns in collected data (yaw, roll and pitch). Extraction methodology of the drowsiness information as timeseries is applicable to other contexts including support for prior work in privacy-preserving augmented coaching, sport rehabilitation, and integration with big data platform in healthcare.\",\"PeriodicalId\":145272,\"journal\":{\"name\":\"2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)\",\"volume\":\"2020 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITISIA50690.2020.9371810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITISIA50690.2020.9371810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的主要重点是从视频中提取困倦信息,以帮助老年人独立生活的概念证明。为了量化打哈欠、眼睑和头部运动随时间的变化,我们从捕获的视频中提取了3000张图像,用于训练和测试与OpenCV库集成的深度学习模型。眼睑和嘴巴开/闭状态的分类准确率在94.3% ~ 97.2%之间。从生成的3D坐标叠加的视频中对头部运动进行视觉检查,在收集的数据(偏航、横摇和俯仰)中显示出清晰的时空模式。睡意信息作为时间序列的提取方法适用于其他环境,包括支持隐私保护增强教练,运动康复以及与医疗保健大数据平台的集成的先前工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Real-Time Drowsiness Detection for Elderly Care
The primary focus of this paper is to produce a proof of concept for extracting drowsiness information from videos to help elderly living on their own. To quantify yawning, eyelid and head movement over time, we extracted 3000 images from captured videos for training and testing of deep learning models integrated with OpenCV library. The achieved classification accuracy for eyelid and mouth open/close status were between 94.3%-97.2%. Visual inspection of head movement from videos with generated 3D coordinate overlays, indicated clear spatiotemporal patterns in collected data (yaw, roll and pitch). Extraction methodology of the drowsiness information as timeseries is applicable to other contexts including support for prior work in privacy-preserving augmented coaching, sport rehabilitation, and integration with big data platform in healthcare.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信