气泡运动观测辅助的水下航行器手势控制

Chih-Wei Lee, Rui Nian, Jenhwa Guo
{"title":"气泡运动观测辅助的水下航行器手势控制","authors":"Chih-Wei Lee, Rui Nian, Jenhwa Guo","doi":"10.1109/AUV.2016.7778697","DOIUrl":null,"url":null,"abstract":"This work describes the gesture control of a Biomimetic Autonomous Underwater Vehicle (BAUV) in a water flow by utilizing information derived from an onboard stereo camera, a compass, and an accelerometer. In an alternating water flow, the BAUV suffers from drag forces and consumes more energy when it advances. The relationship between air bubbles and water flow is first discussed. The air bubble is detected by the Harris corner. The relative position between air bubble and BAUV is estimated based on the calibrated stereo camera and the bubble is tracked by Lucas-Kanade method combined with the image pyramid algorithm. By integrating observation information from the motion of air bubbles, heading angles and 3-axis accelerations, the BAUV adjusts its heading angle to optimize the gesture in the water flow by gaining lift forces from the flow. Finally, the gesture control aided by the bubble motion observation in a water flow is verified by experiments. The control energy consumed by the driving motor are calculated to compare the energy used in a water flow without the gesture control.","PeriodicalId":416057,"journal":{"name":"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Underwater vehicle gesture control aided by air bubble motion observation\",\"authors\":\"Chih-Wei Lee, Rui Nian, Jenhwa Guo\",\"doi\":\"10.1109/AUV.2016.7778697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes the gesture control of a Biomimetic Autonomous Underwater Vehicle (BAUV) in a water flow by utilizing information derived from an onboard stereo camera, a compass, and an accelerometer. In an alternating water flow, the BAUV suffers from drag forces and consumes more energy when it advances. The relationship between air bubbles and water flow is first discussed. The air bubble is detected by the Harris corner. The relative position between air bubble and BAUV is estimated based on the calibrated stereo camera and the bubble is tracked by Lucas-Kanade method combined with the image pyramid algorithm. By integrating observation information from the motion of air bubbles, heading angles and 3-axis accelerations, the BAUV adjusts its heading angle to optimize the gesture in the water flow by gaining lift forces from the flow. Finally, the gesture control aided by the bubble motion observation in a water flow is verified by experiments. The control energy consumed by the driving motor are calculated to compare the energy used in a water flow without the gesture control.\",\"PeriodicalId\":416057,\"journal\":{\"name\":\"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUV.2016.7778697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV.2016.7778697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作描述了一个仿生自主水下航行器(BAUV)在水流中的手势控制,利用来自机载立体摄像机、指南针和加速度计的信息。在交变水流中,BAUV受到阻力,前进时消耗更多能量。首先讨论了气泡与水流的关系。哈里斯角检测到气泡。利用标定后的立体摄像机估计气泡与BAUV之间的相对位置,并结合图像金字塔算法对气泡进行跟踪。通过整合气泡运动、航向角度和3轴加速度的观测信息,BAUV可以调整航向角度,通过从水流中获得升力来优化水流中的姿态。最后,通过实验验证了气泡运动观测辅助的手势控制方法。计算了驱动电机所消耗的控制能量,并与没有手势控制的水流所消耗的能量进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Underwater vehicle gesture control aided by air bubble motion observation
This work describes the gesture control of a Biomimetic Autonomous Underwater Vehicle (BAUV) in a water flow by utilizing information derived from an onboard stereo camera, a compass, and an accelerometer. In an alternating water flow, the BAUV suffers from drag forces and consumes more energy when it advances. The relationship between air bubbles and water flow is first discussed. The air bubble is detected by the Harris corner. The relative position between air bubble and BAUV is estimated based on the calibrated stereo camera and the bubble is tracked by Lucas-Kanade method combined with the image pyramid algorithm. By integrating observation information from the motion of air bubbles, heading angles and 3-axis accelerations, the BAUV adjusts its heading angle to optimize the gesture in the water flow by gaining lift forces from the flow. Finally, the gesture control aided by the bubble motion observation in a water flow is verified by experiments. The control energy consumed by the driving motor are calculated to compare the energy used in a water flow without the gesture control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信