GenExplore:从微阵列数据中对基因相互作用进行交互式探索

Yong Ye, Xintao Wu, K. Subramanian, Liying Zhang
{"title":"GenExplore:从微阵列数据中对基因相互作用进行交互式探索","authors":"Yong Ye, Xintao Wu, K. Subramanian, Liying Zhang","doi":"10.1109/ICDE.2004.1320088","DOIUrl":null,"url":null,"abstract":"DNA microarray provides a powerful basis for analysis of gene expression. Data mining methods such as clustering have been widely applied to microarray data to link genes that show similar expression patterns. However, this approach usually fails to unveil gene-gene interactions in the same cluster. We propose to combine graphical model based interaction analysis with other data mining techniques (e.g., association rule, hierarchical clustering) for this purpose. For interaction analysis, we propose the use of graphical Gaussian model to discover pairwise gene interactions and loglinear model to discover multigene interactions. We have constructed a prototype system that permits rapid interactive exploration of gene relationships.","PeriodicalId":358862,"journal":{"name":"Proceedings. 20th International Conference on Data Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GenExplore: interactive exploration of gene interactions from microarray data\",\"authors\":\"Yong Ye, Xintao Wu, K. Subramanian, Liying Zhang\",\"doi\":\"10.1109/ICDE.2004.1320088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA microarray provides a powerful basis for analysis of gene expression. Data mining methods such as clustering have been widely applied to microarray data to link genes that show similar expression patterns. However, this approach usually fails to unveil gene-gene interactions in the same cluster. We propose to combine graphical model based interaction analysis with other data mining techniques (e.g., association rule, hierarchical clustering) for this purpose. For interaction analysis, we propose the use of graphical Gaussian model to discover pairwise gene interactions and loglinear model to discover multigene interactions. We have constructed a prototype system that permits rapid interactive exploration of gene relationships.\",\"PeriodicalId\":358862,\"journal\":{\"name\":\"Proceedings. 20th International Conference on Data Engineering\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 20th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2004.1320088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 20th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2004.1320088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

DNA微阵列为基因表达分析提供了强有力的基础。聚类等数据挖掘方法已广泛应用于微阵列数据,以链接显示相似表达模式的基因。然而,这种方法通常无法揭示同一簇中基因-基因之间的相互作用。为此,我们建议将基于图形模型的交互分析与其他数据挖掘技术(例如,关联规则,分层聚类)相结合。对于相互作用分析,我们提出使用图形高斯模型来发现基因的成对相互作用,使用对数线性模型来发现多基因的相互作用。我们已经建立了一个原型系统,允许快速互动探索基因关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GenExplore: interactive exploration of gene interactions from microarray data
DNA microarray provides a powerful basis for analysis of gene expression. Data mining methods such as clustering have been widely applied to microarray data to link genes that show similar expression patterns. However, this approach usually fails to unveil gene-gene interactions in the same cluster. We propose to combine graphical model based interaction analysis with other data mining techniques (e.g., association rule, hierarchical clustering) for this purpose. For interaction analysis, we propose the use of graphical Gaussian model to discover pairwise gene interactions and loglinear model to discover multigene interactions. We have constructed a prototype system that permits rapid interactive exploration of gene relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信