通过言语和面部表情进行情绪检测

K. M. Kudiri, A. Said, M. Nayan
{"title":"通过言语和面部表情进行情绪检测","authors":"K. M. Kudiri, A. Said, M. Nayan","doi":"10.1109/CASH.2014.22","DOIUrl":null,"url":null,"abstract":"Human machine interaction is one of the most burgeoning area of research in the field of information technology. To date a majority of research in this field has been conducted using unimodal and multimodal systems with asynchronous data. Because of the above, the improper synchronization, which has become a common problem, due to that, the system complexity increases and the system response time decreases. To counter this problem, a novel approach has been introduced to predict human emotions using human speech and facial expressions. The approach uses two feature vectors, namely, relative bin frequency coefficient (RBFC) and relative sub-image based coefficient (RSB) for speech and visual data respectively. Support vector machine with radial basis kernel is used for feature level classification based fusion technique between two modalities. The proposed novel approach has resulted in galvanizing results for a myriad of inputs and can be adapted to asynchronous data.","PeriodicalId":131954,"journal":{"name":"2014 International Conference on Computer Assisted System in Health","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Emotion Detection through Speech and Facial Expressions\",\"authors\":\"K. M. Kudiri, A. Said, M. Nayan\",\"doi\":\"10.1109/CASH.2014.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human machine interaction is one of the most burgeoning area of research in the field of information technology. To date a majority of research in this field has been conducted using unimodal and multimodal systems with asynchronous data. Because of the above, the improper synchronization, which has become a common problem, due to that, the system complexity increases and the system response time decreases. To counter this problem, a novel approach has been introduced to predict human emotions using human speech and facial expressions. The approach uses two feature vectors, namely, relative bin frequency coefficient (RBFC) and relative sub-image based coefficient (RSB) for speech and visual data respectively. Support vector machine with radial basis kernel is used for feature level classification based fusion technique between two modalities. The proposed novel approach has resulted in galvanizing results for a myriad of inputs and can be adapted to asynchronous data.\",\"PeriodicalId\":131954,\"journal\":{\"name\":\"2014 International Conference on Computer Assisted System in Health\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Computer Assisted System in Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASH.2014.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computer Assisted System in Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASH.2014.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人机交互是信息技术领域中一个新兴的研究领域。迄今为止,该领域的大多数研究都是使用具有异步数据的单模态和多模态系统进行的。由于以上原因,同步不当已经成为一个普遍的问题,从而增加了系统的复杂性,降低了系统的响应时间。为了解决这个问题,一种新的方法被引入,利用人类的语言和面部表情来预测人类的情绪。该方法分别对语音和视觉数据使用两个特征向量,即相对bin频率系数(RBFC)和相对子图像基础系数(RSB)。基于径向基核的支持向量机用于两种模态的特征级分类融合技术。所提出的新方法产生了大量输入的激励结果,并且可以适用于异步数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotion Detection through Speech and Facial Expressions
Human machine interaction is one of the most burgeoning area of research in the field of information technology. To date a majority of research in this field has been conducted using unimodal and multimodal systems with asynchronous data. Because of the above, the improper synchronization, which has become a common problem, due to that, the system complexity increases and the system response time decreases. To counter this problem, a novel approach has been introduced to predict human emotions using human speech and facial expressions. The approach uses two feature vectors, namely, relative bin frequency coefficient (RBFC) and relative sub-image based coefficient (RSB) for speech and visual data respectively. Support vector machine with radial basis kernel is used for feature level classification based fusion technique between two modalities. The proposed novel approach has resulted in galvanizing results for a myriad of inputs and can be adapted to asynchronous data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信