条件指定的二元Kummer-Gamma分布

D. K. Nagar, E. Zarrazola, A. Roldán-Correa
{"title":"条件指定的二元Kummer-Gamma分布","authors":"D. K. Nagar, E. Zarrazola, A. Roldán-Correa","doi":"10.37394/23206.2021.20.21","DOIUrl":null,"url":null,"abstract":"The Kummer-gamma distribution is an extension of gamma distribution and for certain values of parameters slides to a bimodal distribution. In this article, we introduce a bivariate distribution with Kummer-gamma conditionals and call it the conditionally specified bivariate Kummer-gamma distribution/bivariate Kummer-gamma conditionals distribution. Various representations are derived for its product moments, marginal densities, marginal moments, conditional densities, and conditional moments. We also discuss several important properties including, entropies, distributions of sum, and quotient. Most of these representations involve special functions such as the Gauss and the confluent hypergeometric functions. The bivariate Kummer-gamma conditionals distribution studied in this article may serve as an alternative to many existing bivariate models with support on (0,∞)× (0,∞). Key-Words: Bivariate distribution; confluent hypergeometric function; gamma distribution; gamma function; Gauss hypergeometric function; Kummer-gamma distribution. Received: March 20, 2021. Revised: April 20, 2021. Accepted: April 22, 2021. Published: April 29, 2021.","PeriodicalId":112268,"journal":{"name":"WSEAS Transactions on Mathematics archive","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditionally Specified Bivariate Kummer-Gamma Distribution\",\"authors\":\"D. K. Nagar, E. Zarrazola, A. Roldán-Correa\",\"doi\":\"10.37394/23206.2021.20.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kummer-gamma distribution is an extension of gamma distribution and for certain values of parameters slides to a bimodal distribution. In this article, we introduce a bivariate distribution with Kummer-gamma conditionals and call it the conditionally specified bivariate Kummer-gamma distribution/bivariate Kummer-gamma conditionals distribution. Various representations are derived for its product moments, marginal densities, marginal moments, conditional densities, and conditional moments. We also discuss several important properties including, entropies, distributions of sum, and quotient. Most of these representations involve special functions such as the Gauss and the confluent hypergeometric functions. The bivariate Kummer-gamma conditionals distribution studied in this article may serve as an alternative to many existing bivariate models with support on (0,∞)× (0,∞). Key-Words: Bivariate distribution; confluent hypergeometric function; gamma distribution; gamma function; Gauss hypergeometric function; Kummer-gamma distribution. Received: March 20, 2021. Revised: April 20, 2021. Accepted: April 22, 2021. Published: April 29, 2021.\",\"PeriodicalId\":112268,\"journal\":{\"name\":\"WSEAS Transactions on Mathematics archive\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Mathematics archive\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23206.2021.20.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2021.20.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Kummer-gamma分布是gamma分布的扩展,对于某些参数值滑向双峰分布。在本文中,我们引入了一个具有Kummer-gamma条件的二元分布,并将其称为条件指定的二元Kummer-gamma分布/二元Kummer-gamma条件分布。它的积矩、边际密度、边际矩、条件密度和条件矩都得到了不同的表示。我们还讨论了几个重要的性质,包括熵、和分布和商。这些表示大多涉及特殊函数,如高斯函数和合流超几何函数。本文研究的二元Kummer-gamma条件分布可以作为许多支持(0,∞)×(0,∞)的现有二元模型的替代方案。关键词:二元分布;合流超几何函数;伽马分布;伽马函数;高斯超几何函数;Kummer-gamma分布。收稿日期:2021年3月20日。修订日期:2021年4月20日。录用日期:2021年4月22日。发布日期:2021年4月29日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditionally Specified Bivariate Kummer-Gamma Distribution
The Kummer-gamma distribution is an extension of gamma distribution and for certain values of parameters slides to a bimodal distribution. In this article, we introduce a bivariate distribution with Kummer-gamma conditionals and call it the conditionally specified bivariate Kummer-gamma distribution/bivariate Kummer-gamma conditionals distribution. Various representations are derived for its product moments, marginal densities, marginal moments, conditional densities, and conditional moments. We also discuss several important properties including, entropies, distributions of sum, and quotient. Most of these representations involve special functions such as the Gauss and the confluent hypergeometric functions. The bivariate Kummer-gamma conditionals distribution studied in this article may serve as an alternative to many existing bivariate models with support on (0,∞)× (0,∞). Key-Words: Bivariate distribution; confluent hypergeometric function; gamma distribution; gamma function; Gauss hypergeometric function; Kummer-gamma distribution. Received: March 20, 2021. Revised: April 20, 2021. Accepted: April 22, 2021. Published: April 29, 2021.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信