Faezeh Mortazavie, Simin Taheri, Parisa Tandel, F. Zare, Gholmhossein Tamaddon
{"title":"灵芝酸A对人白血病Nalm-6细胞中miR-17-5p、miR-181b表达水平及诱导凋亡的影响","authors":"Faezeh Mortazavie, Simin Taheri, Parisa Tandel, F. Zare, Gholmhossein Tamaddon","doi":"10.18502/ijpho.v12i3.10058","DOIUrl":null,"url":null,"abstract":"Background: In various cancers, Ganoderic Acid A (GAA), an active triterpenoid derived from Ganoderma lucidum, has been proved to show potent anti-tumor effects. However, the possible impacts of GAA on the human leukemia cell line (Nalm-6) are not fully elucidated. Therefore, this research aimed to study the antineoplastic effect of GAA on Nalm-6 cells. \nMaterials and Methods: In this laboratory trial study, Nalm6 cells were cultured in vitro and treated with different doses of GAA (25, 50, 100, 200, and 400 μg/mL) for 24, 48, and 72 hours. The optimal treatment concentration of GAA was determined by the MTT assay. Flow cytometry was used to determine the death of Nalm-6 cells caused by GAA treatment by utilizing FITC-conjugated propidium iodide (PI) and annexin V staining. After incubation, the expression levels of miR-17-5p and miR-181b were monitored using real-time polymerase chain reaction (PCR). \nResults: Based on the half-maximal inhibitory concentration (IC50) measurements of the MTT assay, the optimal treatment concentration of GAA was 140 μg/mL (in a dose and time-dependent manner, p<0.0001). The GAA treatment was selectively toxic to the leukemia Nalm-6 cells and could remarkably induce cell apoptosis (p<0.0001). Besides, GAA downregulated the expression of miR-17-5p and miR-181b in the Nalm-6 cells compared with the untreated cells (P=0.0067 and P=0.0014, respectively). \nConclusions: Based on the present findings, GAA merits further investigation as a promising natural reagent for treating hematologic malignancies.","PeriodicalId":129489,"journal":{"name":"Iranian Journal of Pediatric Hematology & Oncology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of Ganoderic Acid A on miR-17-5p and miR-181b expression level and apoptosis induction in human leukemia Nalm-6 cells\",\"authors\":\"Faezeh Mortazavie, Simin Taheri, Parisa Tandel, F. Zare, Gholmhossein Tamaddon\",\"doi\":\"10.18502/ijpho.v12i3.10058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: In various cancers, Ganoderic Acid A (GAA), an active triterpenoid derived from Ganoderma lucidum, has been proved to show potent anti-tumor effects. However, the possible impacts of GAA on the human leukemia cell line (Nalm-6) are not fully elucidated. Therefore, this research aimed to study the antineoplastic effect of GAA on Nalm-6 cells. \\nMaterials and Methods: In this laboratory trial study, Nalm6 cells were cultured in vitro and treated with different doses of GAA (25, 50, 100, 200, and 400 μg/mL) for 24, 48, and 72 hours. The optimal treatment concentration of GAA was determined by the MTT assay. Flow cytometry was used to determine the death of Nalm-6 cells caused by GAA treatment by utilizing FITC-conjugated propidium iodide (PI) and annexin V staining. After incubation, the expression levels of miR-17-5p and miR-181b were monitored using real-time polymerase chain reaction (PCR). \\nResults: Based on the half-maximal inhibitory concentration (IC50) measurements of the MTT assay, the optimal treatment concentration of GAA was 140 μg/mL (in a dose and time-dependent manner, p<0.0001). The GAA treatment was selectively toxic to the leukemia Nalm-6 cells and could remarkably induce cell apoptosis (p<0.0001). Besides, GAA downregulated the expression of miR-17-5p and miR-181b in the Nalm-6 cells compared with the untreated cells (P=0.0067 and P=0.0014, respectively). \\nConclusions: Based on the present findings, GAA merits further investigation as a promising natural reagent for treating hematologic malignancies.\",\"PeriodicalId\":129489,\"journal\":{\"name\":\"Iranian Journal of Pediatric Hematology & Oncology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Pediatric Hematology & Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/ijpho.v12i3.10058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Pediatric Hematology & Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijpho.v12i3.10058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effect of Ganoderic Acid A on miR-17-5p and miR-181b expression level and apoptosis induction in human leukemia Nalm-6 cells
Background: In various cancers, Ganoderic Acid A (GAA), an active triterpenoid derived from Ganoderma lucidum, has been proved to show potent anti-tumor effects. However, the possible impacts of GAA on the human leukemia cell line (Nalm-6) are not fully elucidated. Therefore, this research aimed to study the antineoplastic effect of GAA on Nalm-6 cells.
Materials and Methods: In this laboratory trial study, Nalm6 cells were cultured in vitro and treated with different doses of GAA (25, 50, 100, 200, and 400 μg/mL) for 24, 48, and 72 hours. The optimal treatment concentration of GAA was determined by the MTT assay. Flow cytometry was used to determine the death of Nalm-6 cells caused by GAA treatment by utilizing FITC-conjugated propidium iodide (PI) and annexin V staining. After incubation, the expression levels of miR-17-5p and miR-181b were monitored using real-time polymerase chain reaction (PCR).
Results: Based on the half-maximal inhibitory concentration (IC50) measurements of the MTT assay, the optimal treatment concentration of GAA was 140 μg/mL (in a dose and time-dependent manner, p<0.0001). The GAA treatment was selectively toxic to the leukemia Nalm-6 cells and could remarkably induce cell apoptosis (p<0.0001). Besides, GAA downregulated the expression of miR-17-5p and miR-181b in the Nalm-6 cells compared with the untreated cells (P=0.0067 and P=0.0014, respectively).
Conclusions: Based on the present findings, GAA merits further investigation as a promising natural reagent for treating hematologic malignancies.