软件度量估计:使用集成数据分析方法的实证研究

D. Deng, M. Purvis
{"title":"软件度量估计:使用集成数据分析方法的实证研究","authors":"D. Deng, M. Purvis","doi":"10.1109/ICSSSM.2007.4280207","DOIUrl":null,"url":null,"abstract":"Automatic software effort estimation is important for quality management in the software development industry, but it still remains a challenging issue. In this paper we present an empirical study on the software effort estimation problem using a benchmark dataset. A number of machine learning techniques are employed to construct an integrated data analysis approach that extracts useful information from visualisation, feature selection, model selection and validation.","PeriodicalId":153603,"journal":{"name":"2007 International Conference on Service Systems and Service Management","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Software Metric Estimation: An Empirical Study Using An Integrated Data Analysis Approach\",\"authors\":\"D. Deng, M. Purvis\",\"doi\":\"10.1109/ICSSSM.2007.4280207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic software effort estimation is important for quality management in the software development industry, but it still remains a challenging issue. In this paper we present an empirical study on the software effort estimation problem using a benchmark dataset. A number of machine learning techniques are employed to construct an integrated data analysis approach that extracts useful information from visualisation, feature selection, model selection and validation.\",\"PeriodicalId\":153603,\"journal\":{\"name\":\"2007 International Conference on Service Systems and Service Management\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Service Systems and Service Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSSM.2007.4280207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Service Systems and Service Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSSM.2007.4280207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自动软件工作量评估对于软件开发行业的质量管理非常重要,但它仍然是一个具有挑战性的问题。本文利用一个基准数据集对软件工作量估算问题进行了实证研究。许多机器学习技术被用来构建一个集成的数据分析方法,从可视化、特征选择、模型选择和验证中提取有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software Metric Estimation: An Empirical Study Using An Integrated Data Analysis Approach
Automatic software effort estimation is important for quality management in the software development industry, but it still remains a challenging issue. In this paper we present an empirical study on the software effort estimation problem using a benchmark dataset. A number of machine learning techniques are employed to construct an integrated data analysis approach that extracts useful information from visualisation, feature selection, model selection and validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信